
Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year 

A Learnable Spectral Memory Graph for

Recognition and Segmentation

Timothée Cour ∗ Jianbo Shi †

∗University of Pennsylvania,
†University of Pennsylvania, jshi@cis.upenn.edu

University of Pennsylvania Department of Computer and Information Science Techni-
cal Report No. MS-CIS-04-12.

This paper is posted at ScholarlyCommons@Penn.

http://repository.upenn.edu/cis reports/14

Computer & Information Science

A Learnable Spectral Memory Graph for
Recognition and Segmentation

by

Timothée Cour and Jianbo Shi

CIS Technical Reports MS–CIS–04–12
Computer & Information Science June 2004
Department of Computer and Information Science
University of Pennsylvania

A Learnable Spectral Memory Graph for
Recognition and Segmentation

Timothée Cour Jianbo Shi
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19103

Abstract

Image segmentation is often treated as an unsupervised task. Segmen-
tation by human, in contrast, relies heavily on memory to produce an
object-like clustering, through a mechanism of controlled hallucination.
This paper presents a learning algorithm for memory-driven object seg-
mentation and recognition. We propose a general spectral graph learning
algorithm based on gradient descent in the space of graph weight matrix
using derivatives of eigenvectors. The gradients are efficiently computed
using the theory of implicit functions. This algorithm effectively learns
a graph network capable of memorizing and retrieving multiple patterns
given noisy inputs. We demonstrate the validity of this approach on seg-
mentation and recognition tasks, including geometric shape extraction,
and hand-written digit recognition.

Keywords: segmentation, recognition, learning spectral graph, deriva-
tive of eigenvectors, normalized cuts

1 Introduction

The act of seeing, the act of measuring photons in an image, is clearly different from
the act of perceiving. When we perceive images, the human brain is constantly ignoring
sharp shadow edges, hallucinating parts in largely occluded objects and detecting faint but
familiar objects. One can conjecture that there is a complex interaction between memory
of objects and image pixel analysis.

Image segmentation and object recognition have many aspects in common. Both can be
viewed as classification problems where one wants to label pixels indicating image regions
or object classes. In both problems, the information we rely on are local image features,
regional feature-feature relationships, and global label consistency. In image segmenta-
tion, local features are pixel color/texture, and regional relationships are pair-wise pixel
similarities. In object recognition, local features are object parts, and feature relationships
are spatial compatibility of the object parts. These regional similarity/compatibility mea-
sures are integrated to reach a global segmentation/recognition labelling. Such a distributed
representation could be a central part of object memory.

This computation process of local feature detection, global decision based on regional spa-
tial feature combination is well captured in the Markov Random Field (MRF) formulation

of both segmentation and recognition problems. MRF has a probability formulation al-
lowing one to apply Bayesian inferencing and learning procedure for tuning graph clique
weights. However, both inferencing and learning are computationally difficult.

Spectral graph partitioning, such as Normalized Cut (Ncut)[7], has been developed in the
image segmentation domain as a computationally efficient alternative to MRF. However,
the graph structure has to be hand designed, and there is little knowledge on how to encode
familiar object shapes beyond Gestalt laws. In order to encode high level object memory
in spectral graph, an automated learning algorithm is needed.

Learning spectral graph cut turns out to be a difficult task, because eigenvectors are only
implicitly defined. Two main attempts have been made in learning spectral graph cuts.
Meila-Shi[5] learned the graph weight Wij indirectly through an equivalent random walk
matrix Pij , with no explicit constraints on the Ncut eigenvector itself. Bach-Jordan[1]
formulated a direct optimization of W with respect to its Ncut eigenvector. However their
computation is based on making a differentiable approximation of eigenvector using power
method. The resulting computation of derivatives of eigenvector is complex and can be
computationally unstable.

We present in this paper a direct method for learning spectral graph cut, based on efficient
computation of derivatives of Ncut eigenvectors in exact analytical form. This capability
allows us to design a set of interesting recognition-segmentation graphs that can encode and
detect complex objects. The paper is organized as follows. We describe in Sec. 2 object
recognition and segmentation encoding in spectral graph framework. Sec. 3 introduces the
error energy to be minimized by learning. Sec. 4 describes the learning algorithm and its
convergence properties. We demonstrate our theory with experiments in Sec. 5, and then
draw comparison with Recurrent Neural Networks in Sec. 6. We finally summarize our
contributions in Sec. 7.

2 Encoding Recognition and Segmentation with Spectral Graph Cuts

A Spectral Memory Graph G = 〈V,E,W 〉 consists of a set V of n nodes (pixels, fea-
tures, class labels), a set of edges E ⊂ V × V indicating which nodes are connected,
and a weight function W specifying their pair-wise similarity. Given an input image
I , we detect a subset V (I) ⊂ V of “on” features, inducing the subgraph G(I) =
〈V (I), E ∩ V (I) × V (I),W (I)〉. Depending on problems, W (I) ∈ R

|V (I)|×|V (I)| is ob-
tained by extracting rows and columns of W indexed by V (I), or by a set of parameters Θ
and feature outputs F (I) = {Ft(I)}: W (I) = f(Θ, F (I)). The output for both segmen-
tation and recognition in image I is encoded with Ncut eigenvector Xncut, defined as the
second eigenvector of the system W (I)X = λDW (I)X, where DW = diag(W1). The
aim is to learn W either directly in the coefficient space (Wij) or through its parameters Θ.
Three applications are detailed below to illustrate the concept.

2.1 Case 1: Image Segmentation and Data Clustering

We construct an Image Segmentation Graph using the ideas outlined in [2, 6]. V is the set
of pixels or data elements to be clustered. Features such as brightness, color, texture are
computed on input image I , F (I) = {Ft(I)}, giving the following expression of W (I):

W (I)ij =
∑
Ft

αFt
exp(−‖Ft(I)i − Ft(I)j‖/σFt

) (1)

Thresholding Xncut[W (I)] determines the segmentation clusters. Our goal is to learn the
parameters Θ = {αFt

, σFt
} using a set of training images with ground truth segmentation.

2.2 Case 2: Geometric Shape Detection

We construct a Shape Graph for detecting and enhancing specific geometrical shapes in
random background cluster. V = {Edgexi,θj

} is the set of image edge nodes, one for each
possible edge position xi and edge orientation θj . We encode invariance by translation and
rotation of graph connections with:

W (Edgexi,θj
, Edgexi′ ,θj′

) = f(xi′ − xi, θj′ − θj) (2)

On input image I , edges are detected and quantized into spatial locations and edge orien-
tations. This leads to a subset of nodes Edgeon(I) ⊂ V , with the corresponding subgraph
weights W (I) = W (Edgeon(I), Edgeon(I)). Xncut[W (I)] is thresholded to determine
foreground shape edges vs. background edges. The goal here is to learn function f .

2.3 Case 3: Object Recognition

We construct a Recognition Graph to classify images, given training image/label pairs (see
Fig. 1). V = Vinput

⋃
Voutput consists of image features (pixels for digit recognition) and

classification labels. W has pixel-pixel connections Wpp, pixel-label connections Wp�, and
label-label connections W��:

W =

[
Wpp Wp�

WT
p� W��

]
(3)

To classify an image I , we first extract nodes V (I) = Vinput(I)
⋃

Voutput, where
Vinput(I) ⊂ Vinput indicates pixels with intensity greater than a threshold. This induces
a subgraph with weight matrix W (I) obtained by extracting rows and columns of W .
Xncut[W (I)] is thresholded to determine which label node is grouped (therefore classified)
with the pixel nodes detected. Note that we also obtain a segmentation of the foreground
object pixels against the background noise pixels, thereby achieving both segmentation and
recognition. One can also extend pixel nodes to object part nodes by using more complex
image features. Choosing the right graph weights W can be quite tricky, because of con-
flicting overlap across images between pixels and labels: in the digit recognition case, we
have potentially a huge number of possible input patterns (60,000 for MNIST database)
with multiple classification labels (10 digits). The goal here is to learn the entries of Wpp,
Wp� and W��.

Indexing

"on" pixels

Feedback for learning

X_ncut[W(I)] Target(X)

error

error

"0"

"1"

"2"

"9"

"6"

"4"

"5"

"3"

"7"

"8"

Output

Nodes
Image Pixel Nodes

Recognition Graph WInput Image

Subgraph W(I)

Figure 1: Recognition Graph classifying input patterns into multiple labels. Graph nodes V consist
of input pixel nodes Vinput and output classification nodes Voutput. Graph weights W , to be learned,
include pixel-pixel, pixel-label, and label-label connections. To classify an image I , “on” pixel nodes
Vinput(I) are extracted by image thresholding; they index a corresponding subgraph with weight
matrix W (I). Ncut eigenvector Xncut[W (I)] is computed and thresholded, providing labelling of
image pixels and classification nodes. Classification errors provide feedback to update W .

3 Error Energy for Learning Spectral Graph Cuts

Our goal is to store the desired input/output patterns using Ncut eigenvectors on graph
nodes selected by the input image. Let X∗(I) ∈ R

n be a target label vector for segmen-
tation/recognition of image I . In image segmentation and shape detection, the target is a
{+1/− 1} indicator vector encoding two segments. In object recognition, we assign “+1”
to the correct output node along with foreground object pixel nodes, and “−1” to all other
output nodes along with background pixel nodes.

Definitions Xp[W], λp are the pth largest eigenvector, eigenvalue of WX = λDW X with

‖Xp[W]‖ = 1 and DW = diag(W1). Define Xncut[W] = X2[W] for W ∈ S
2,X∗(I)
n ,

a certain subset1 of Sn, the symmetric matrices in R
n×n. This subset avoids singularities

when defining Xncut[W] uniquely. We will use later W † the pseudo-inverse, PX⊥(Z) =
Z − (XT Z)X the orthogonal projection along X⊥. Define the one-target energy function:

E(W, I) =
1

2
‖Xncut[W (I)] − X∗(I)‖2, for W ∈ S2,X∗(I)

n (4)

The multi-target energy function is defined as E(W) =
∑

I E(W, I), for W ∈ ∩IS
2,X∗(I)
n .

This error energy function has the following property, which will be useful later on when
we try to learn the graph network.

Proposition 3.1 (E(W, I) has no local minimum) The single target energy function has
all its local minima in S2,X∗

n

⋂ {W : λ2(W) �= −1} equal to the global minimum, 0.

The proof, in appendix, shows that at a critical point, the error vector Xncut − X∗(I) is
in the kernel of a certain matrix of rank n-1. This shows in fact that Xncut − X∗(I) is
proportional to Xncut, which finally leads to Xncut = X∗(I).

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Point set 1
Point set 2

Energy map − Gradient descent

0 1.4 2.8 4.2 5.6

−0.6

−0.34

−0.08

0.18

0.44 start
end
intermediate

0 20 40 60 80 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Indicator Vectors

Target
Start
End

(A) Point set (B) Error Energy (C) Ncut eigenvector

Figure 2: Learning point set clustering. W (i, j) = exp(−σx|x(i) − x(j)|) +
exp(−σy|y(i) − y(j)|). A) 2D layout of the points. B) Energy landscape of E(σx, σy), and gra-
dient path taken by Eq.7, (σ̇x, σ̇y) = −(∂E

∂σx
, ∂E

∂σy
). C) Target vector comparing with initial and final

learned Ncut vector. The graph nodes are ordered according to their x-axis position.

4 Gradient Descent Learning Rule

Before explaining our solution for learning graph connections, we show why Hebbian
learning rule is insufficient for our problem. This rule strengthens weights between nodes
that co-occur in an image: Wij =

∑
I X∗(I)iX

∗(I)j in our notation. Though intuitive,

1Sp,Y
n =

{
W ∈ Sn : DW > 0, λp single , ker(W − λpDW)

⋂
Y ⊥ = {0}}. Y defines a polar-

ity on eigenvector Xp via Y T Xp > 0, so as to define Xp uniquely. Note the definition of Sp,Y
n

ensures that Y T Xp �= 0.

this rule cannot learn non-linearly separable functions (without hidden units), such as XOR.
XOR is defined by the 4 patterns of (x, y, zXOR) : {(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0)}.
Hebbian rule gives W (x, z) = W (y, z) = 0.5, W (x, y) = 0.25, which is insufficient for
coding (x, y, zXOR) = (1, 1, 0).

We minimize the error energy over W by gradient descent2: W := W − η ∂E
∂W . We study

this learning rule with the continuous-time PDE Ẇ = − ∂E
∂W = − ∂E

∂Xncut[W]
∂Xncut[W]

∂W .

The difficult part is to show that an exact analytical form of ∂Xncut

∂W (with n(n + 1)/2
partial derivatives) exists, and that the resulting PDE converges.

Theorem 4.1 (Derivative of Ncut eigenvectors) The map W → (Xp, λp) is C∞

over Sp,Y
n , and we can express the derivatives over any C1 path W (t) as:

dXp[W (t)]

dt
= −(W − λpDW)†(W ′ − λpD

′
W − dλp

dt
DW)Xp (5)

dλp

dt
=

XT
p (W ′ − λpD

′
W)Xp

XT
p DW Xp

(6)

We obtain an analog theorem for the derivative of standard eigenvectors, by
simply replacing DW with I . The proof in appendix uses the implicit func-
tion theorem to show Xp[W] is C∞, then differentiates WXp = λpDW Xp:
(W −λpDW)X ′

p +(W ′−λpD
′
W −λ′

pDW)Xp = 0. Computation of Eq.5 is dominated by
the pseudo-inverse (W − λpDW)†, which requires O(n3) time if implemented naively as
a matrix inversion. We remove this bottleneck by combining the term (Xncut − X∗(I)) in

∂E
∂Xncut

with (W −λ2DW)† in ∂Xncut

∂W . We define Y = −(W −λ2DW)†(Xncut−X∗(I)),

and solve Y by
(

W − λ2DW Xncut

XT
ncut 0

)(
Y

y

)
= −

(
P

X⊥
ncut

(Xncut − X∗(I))

0

)
. While the

exact solution is also O(n3), an iterative solver can be used with O(n2) running time.
Putting everything together, we obtain an efficient and exact gradient update rule as:

∂E
∂W ij

= Xi
ncutYj + Xj

ncutYi − λ2(X
i
ncutYi + Xj

ncutYj) − λ′
2ijY

T DW Xncut(7)

with λ′
2ij = (2Xi

ncutX
j
ncut − λ2(X

i
ncut

2 + Xj
ncut

2))/XT
ncutDW Xncut (8)

Empirically, we observe that E(W (t)) converges to 0 exponentially fast when W (t) follows
the gradient path, even if the number of training examples grows as O(n). We will prove
this fact in the case of a single target. The convergence of E(W (t)) however does not imply
that of W (t). Indeed, one can construct functions for which gradient descent leads to limit
cycle oscillations. The following proposition shows that this cannot happen here.

Proposition 4.2 (Exponential convergence of the 1-target learning rule to a global minimum)
The PDE Ẇ = − ∂E

∂W either converges to a global energy minimum W∞, or it escapes any
compact K ⊂ S2,X∗

n . In the first case, E(W (t)) → 0 exponentially.

Our proof in appendix, shows that ‖ ∂E
∂W ‖ ≥ b

√E , leading to the convergence of W (t), and
then d

dtE(W (t)) ≤ −b2E , which shows the exponential decay of E(W (t)).

The outline of our algorithm is the following:

2When W is parameterized by Θ, we have instead Θ := Θ − η ∂E
∂Θ

= Θ − η ∂E
∂W

∂W
∂Θ

1. Initialize random matrix W0 with small variance, but preferably large eigengap
2. Repeat 3-4 until

∑
I E(W, I) > threshold:

3. Compute X̄2, λ2 as second eigenvector, eigenvalue of D
−1/2
W (I)W (I)D

−1/2
W (I);

Xncut = D
−1/2
W (I)X̄2/‖D−1/2

W (I)X̄2‖ · sign(X∗(I)T D
−1/2
W (I)X̄2)

4. Compute W (I) = W (I)− η ∂E(W,I)
∂W (I) with Eq.7, and E(W, I) = 1

2
‖Xncut −X∗(I)‖2

5 Experiments

Experiment 1, Fig.2, tested our learning algorithm on point set clustering as described in
Sec. 2.1. The weight matrix W is parameterized by Θ = (σx, σy). We calculated the error
energy landscape in the whole searching space of (σx, σy) by brute force. We verified that
the gradients computed analytically by Eq.7 are accurate comparing with those directly
measured on the energy landscape, as in Fig.2B.

Experiment 2, Fig.3, trained a network to detect rectangular shapes in a cluttered environ-
ment, as described in Sec.2.2. With only very few training examples, the network is able to
encode and detect the rectangle even with large amount of background clutters.

Experiment 3, Fig.4, verified the algorithm’s ability to encode multiple logic func-
tions, AND, OR, XOR, in a single graph network. The graph contains 7 nodes:
{x,¬x, y,¬y, zAND, zOR, zXOR, }. A matrix W of size 7×7 was learned. To compute the
output for XOR(x = 1, y = 0), for example, a submatrix of W with nodes (x,¬y, zXOR)
is extracted, on which Ncut eigenvectors are computed. Results demonstrate that multiple
linearly and nonlinearly separable functions can be learned in one graph without hidden
units. A network is also trained to encode XOR alone, to ensure that we are not leveraging
the AND and OR nodes for learning XOR.

Experiment 4, Fig.5, tested the algorithm on performing recognition and segmentation for
multiple object classes. The algorithm described in Sec.2.3 was implemented on MNIST
database[4] using binary pixel values as raw features. A graph network W consisting of
4102 entries was learned on images of 202 pixels belonging to 10 digit classes. It achieved
around 11% testing error (with similar training error) on 5000 training/testing images. This
error rate is high comparing with the state-of-the-art dedicated algorithms. However, our
recognition network has an unique capability: it can determine which image features are
responsible for producing the classification (via symmetric input-output association).

6 Comparison with Recurrent Neural Networks

At first glance, Recurrent Neural Networks(RNN)[3], governed by Ẋrnn = −Xrnn +
σ(WXrnn + B), with σ a non-linear function, are quite similar to our system. Spectral
Memory Graph, RNN and related Hopfield nets, Boltzmann machines, all store patterns in
distributed network connections. The main difference is in how the patterns are stored. Our
system uses input to select a subgraph W (I) of the entire graph W , and encodes patterns
using its Ncut eigenvector. By contrast, RNN clamp the value of certain input nodes,
and store patterns in local energy minima of the entire graph: the steady-state Xrnn =
σ(WXrnn + B) depends on W and B, the initial input. The non-linearity of σ is essential
for RNN, otherwise the system would behave as a linear classifier. The learning rules are
also similar but with an important difference. Recurrent back-propagation W := W −
η ∂Ernn

∂W , derived from gradient descent of the energy Ernn(W) = 1
2‖Xrnn(W, B)−X∗‖2,

leads to ∂Ernn

∂W = YrnnXT
rnn with Yrnn = −(W − diag(1

σ′(Xrnn)))
−1 (Xnn − X∗). The

energy gradient expressed in Eq.7 is similar, but with essentially 2 more terms: ∂λ
∂Wij

shows

the sensibility of the eigenmode w.r.t. W , and −λ(XiYi +XjYj) comes from our choice of
ncut vectors instead of eigenvectors. Finally, eigencomputation of Ncut has a more efficient
numerical solution than the non-linear systems used in RNN.

Figure 3: Square shape detection and enhancement. The Shape Graph weights
W (Edgexi,θj

, Edgexi′ ,θj′
) = f(xi′ −xi, θj′ −θj) are learned with 50 training examples on image

size = 100 × 100. f has a total of 4096 free parameters to be learned (edge position displacements
δx=δy =16, edge orientation displacements δθ = 4).

−1

0

1 Input On
Output
Input Off

NOT X NOT Y

X Y AND
OR

XOR

X

X XY

Y

YNOT X

NOT X NOT X NOT Y

NOT Y

NOT Y
AND AND

AND
OR OR OR

XOR XOR

XOR

Figure 4: Learning functions AND, OR, XOR. Graph nodes: {x,¬x, y,¬y, zAND, zOR, zXOR}.
Ncut on a subgraph extracted from the learned graph W encodes the desired logical operations.

0

4

3

2

1

5

9

8

7

6

C
L

A
SSIF

IC
A

T
IO

N
 L

A
B

E
L

Training
target

output

 Testing
 input

ouput

input

Figure 5: Digit recognition as detailed in Fig.1, on image size of 20 × 20 pixels with 10 labels.
Recognition Graph weight matrix W has 410 × 410 entries to be learned. Xncut[W (I)] computed
from W encodes 1) recognition: digit labelling by picking the output node (vertical bar next to image)
with maximum (brightest) value, and 2) segmentation: removing irrelevant image pixels.

7 Conclusion

We make two contributions in this paper. First, we show that a spectral memory graph can
memorize and recover multiple object patterns using distributed graph connections. Each
input pattern invokes a selected subgraph on which the derived Ncut eigenvector encodes
the desired output pattern. Second, we show that such graph connections can be learned
directly by minimizing the error on its encoding Ncut eigenvectors. We prove that this
learning algorithm converges at an exponential rate in a simple case.

References

[1] Francis R. Bach and Michael I. Jordan. Learning spectral clustering. Advances in Neural Infor-
mation Processing Systems (NIPS), 2003.

[2] Charless Fowlkes, David Martin, and Jitendra Malik. Learning to detect natural image bound-
aries using local brightness, color and texture cues. IEEE Transactions on Pattern Analysis and
Machine Intelligence(PAMI), 26(5):530–549, 2004.

[3] John Hertz, Anders Krogh, and Richard G. Palmer. introduction to the theory of neural compu-
tation. Addison Wesley Longman, 1991.

[4] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[5] Marina Meila and Jianbo Shi. Learning segmentation with random walk. Advances in Neural
Information Processing Systems (NIPS), 2001.

[6] Andrew Y. Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algo-
rithm. Advances in Neural Information Processing Systems (NIPS), 2002.

[7] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence(PAMI), 22(8):888–905, 2000.

8 Appendix

Proof of theorem 4.1 Let Φ(W, X, λ) =
(

WX − λDW X

XT X − 1

)
with W ∈ Sp,Y

n . Let W0 ∈
Sp,Y

n , λ0 = λp(W0), and X0 = Xp(W0). Sp,Y
n is open, Φ(W0, X0, λ0) = 0, and(

∂Φ
∂X

∂Φ
∂λ

)
W0,X0,λ0

=
(

W0 − λ0DW0
−DW0

X0

XT
0

0

)
∈ GLn+1 (by expliciting the Kernel, not-

ing λ0 is single). The function given by the implicit function theorem matches Xp near W0, so
(Xp(W), λp(W)) ∈ C∞(Sp,Y

n). ∀W (t) ∈ C1(Sp,Y
n), differentiating WX = λDW X w.r.t. W (t)

yields (W ′ − λD′)X + (W − λD)X ′ − λ′DX = 0. Left-multiplying by XT gives the desired
expression for λ′. For X ′, we notice that XT X ′ = 0 and that X ′ = arg minZ∈X⊥ ‖(W −λD)Z +
(W ′ − λD′ − λ′D)X‖ �

Proof of prop 3.1 ∂E
∂Wij

= 0 at a local minimum (S2,X∗

n is open). If |λ2| < 1, (|λ2| >

1 is similar) we suppose WLOG that |x1| = max{|xi|}. By Eq.7, (∂E
∂W11

... ∂E
∂Wn1

) =

Y T

⎡
⎣

⎛
⎝ x1(1 − λ) · · · xi − λx1

0
. . . 0

x1 − λxi

⎞
⎠ − (. . . λ′

i1DX · · ·)

⎤
⎦ = Y T [M1−M2]; M1 ∈ GLn and

rk(M2) = 1 so rk(M1−M2) ≥ n−1. XT M1 = XT M2 proves easily, and Y ∈ ker(M1−M2)T

so Y ∝ X . The pseudo-inverse expression leads to Y = 0, then X = X∗
�

Proof of prop 4.2 If W (t) stays in a compact K ⊂ S2,X∗

n , it defined ∀t > 0 so d
dt
E(W (t)) →

0. d
dt
E(W (t)) = −‖ ∂E

∂W
‖2 ⇒ ∂E

∂W
(W∞) = 0 ∀W∞ in the ω-limit set; and by

3.1, E(W∞) = 0 ⇒ E(W (t)) → 0. We then prove that W (t) → W∞. As in

3.1, ‖ ∂E
∂W

‖2 writes as
∑

ij

(
Y T M (ij)(X)

)2

, where Y T = −(X − X∗)T (W − λDW)†.

Also, ‖Y ‖ ≥
√

2E(1 − E) 1
Dmax(1−λn)

, because Sp((W − λDW)†) = (1
1−λ2

, 0, . . . , 1
λn−λ2

),

Im((W − λDW)†) = X⊥, and after some calculus, ‖PX⊥(X − X∗)‖2 = ‖X − X∗‖2 −
1
4
‖X − X∗‖4. Let f(W, Z) =

∑
ij

(
ZT M (ij)(X(W))

)2

. By 3.1, f(W, Z) = 0 ⇒ Z ∝ X ,

so a = minK×(B(0,1)∩X∗⊥) f > 0 ⇒ ∀t, f(W (t), Y) ≥ a · ‖Y ‖2. This yields ‖ ∂E
∂W

‖ ≥
√

2a
Dmax(1−λn)

√
E(1 − E) ≥ b

√E for some b > 0 and t ≥ t0. By a variant of Lojasiewicz’ in-

equality (valid because
∫

du

b
√

u
converges near 0), W → W∞. Finally, d

dt
E(W (t)) ≤ −b2E ⇒

E(W (t)) ≤ E(W (0))e−b2t
�

