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We present an efficient method to maximize Gen-
eralized Rayleigh Quotients under affine constraints
(ACRQ). We show it can be solved by an eigendecom-
position, which leads to more efficient solvers than an
equivalent QCQP formulation.

1 Affinely Constrained Generalized

Rayleigh Quotients

The general formulation of the Affinely Constrained
Generalized Rayleigh Quotient (ACRQ) is as follows:

Maximize ǫ(x) =
xT Ax

xT Bx
(1)

Subject to Cx = d (2)

where x ∈ R
n, b ∈ R

k, A,B ∈ Sn, B > 0, and C ∈
Rk×n is full-rank, k (k < n).

1.1 Special Case: B = In, d = 0 (Linear

Constraint)

The solution to this problem has been proposed in
[1, 2]. We give here a summary. After computing
the Lagrangian, we obtain the following unconstrained
Rayleigh Quotient Maximization:

Maximize ǫ(x) =
xT PAPx

xT x
, (3)

where we have introduced the feasible subspace pro-
jection matrix

P = In − CT (CCT )−1C (4)

The solution of the program can be computed using
the leading eigenvector of PAP .

1.2 General Case: how to reformulate the
problem

We assume here that b 6= 0, otherwise we use the pre-
vious section. First we get rid of the matrix B at the

denominator. With the change of variable x = B−1/2y
(which exists 1 since B > 0) we obtain:

Maximize ǫ1(y) =
yT A′y

yT y
(5)

Subject to C ′y = d, (6)

with A′ = B−1/2AB−1/2 and C ′ = CB−1/2.

Second, we notice that (5) is equivalent to:

Maximize ǫ2(z, t) =
zT A′z

zT z
(7)

Subject to C ′z = td, (8)

where we introduced the new variable t ∈ R. Indeed,
(z∗, t∗) is an optimum of (7) iff y∗ = (1/t∗)z∗ is an
optimum of (5). The special case t∗ = 0 will be taken
care of in section 1.3. We now explore three different
approaches to solve (7), and explain their pros and
cons. The first one increases the number of variables
by 1, while the other two decrease the number of con-
straints by 1.

Solution 1. The most natural and common solution
is to increase the dimension by 1, transforming the
affine constraint into a linear one:

Maximize ǫ3(z̄) =
z̄T Āz̄

z̄T Īnz̄
(9)

Subject to C̄z̄ = 0, (10)

where z̄ =

[

z
t

]

, Ā =

[

A′ 0
0 0

]

, C̄ =
[

C ′ −b
]

,

and Īn =

[

In 0
0 0

]

. The problem is that the denom-

inator matrix does not satisfy Īn > 0 anymore, so we

1In many practical problems, the computation of B
−1/2

is not a bottleneck, either because B is a diagonal matrix or
because its Cholesky factorization is simple. In the latter
case we never compute the matrix B

−1/2 but instead we
solve triangular systems on the fly



cannot fall back into the linear case treated in section
1.1. Note, the problem can be cast as a Quadratically
Constrained Quadratic Program (QCQP):

Maximize ǫ4(z̄
′) = z̄′T Āz̄′ (11)

Subject to C̄z̄′ = 0, z̄′T Īnz̄′ ≤ 1, (12)

but this is not very useful and can be dealt with more
efficiently as we shall see.

Solution 2. Notice that [∃t : C ′z = tb] ⇔ C ′z ∈
Span{b} ⇔ C ′z ∈ ker KT

b , where Kb is a matrix whose
range is b⊥. The matrix Kb = Ik − bbT /||b||2 ∈ R

k×k

does the job, since we have: KT
b u = 0 ⇒ u ∈ Span{b}

and KT
b b = 0, so we have the equivalent problem:

Maximize ǫ5(z) =
zT A′z

zT z
(13)

Subject to KbC
′z = 0, (14)

since Kb is symmetric. There is one last detail: KbC
′

is not full rank because rank(Kb) = k − 1. Assume
WLOG that bk 6= 0 (otherwise reorder the rows of
C ′ and b). Letting J =

[

Ik−1 0
]

be the canoni-
cal projector R

k → R
k−1, simple calculus shows that

Ceq = JKbC
′ is a full rank matrix with same kernel

as KbC
′. We now obtain a valid linearly constrained

Rayleigh Quotient in the form of:

Maximize ǫ6(z) =
zT A′z

zT z
(15)

Subject to JKbC
′z = 0 (16)

In that form , we can solve this problem with the re-
sults of section 1.1.

Extension. The solution outlined here can be read-
ily generalized to handle the following constraint:

C ′z ∈ Span{b1, ..., bs} (17)

(before we had s = 1). In this case, letting B =
[b1...bs], we take KB = Ik − B(BT B)−1BT and J ∈
R

k−s×k, that selects k − s independant rows of KB .

Solution 3. The solution 2 above is workable, and
may be the only way to deal with the aforementioned
extension, but it may not be the most efficient method
if the matrices are structured. The third solution takes
advantage of any structure in the constraint matrix.

Assuming bk 6= 0 as before, [∃t : C ′z = tb] ⇔
∀i ∈ [1, k − 1], (C ′z)i = (1/bk)(C ′z)kbi ⇔ J(C ′ −
(1/bk)bC ′

k)z = 0, with C ′

k the last row of C. We can
therefore take Ceq = J(C ′ − (1/bk)bC ′

k) as our new
equivalent linear constraint matrix. It has the same
kernel and therefore is also full rank.

Comparison. Recall that the solution to the linear
case 1.1 requires computing the inverse (CeqC

T
eq)

−1

where Ceq is the matrix of the equivalent linear con-
straint formulation. Assume C is sparse and b is a full
k × 1 vector. In solution 2, Ceq = J(Ik − bbT /||b||2)C ′

is full because of bbT , which could be a problem for
large k. However, it is easy to show that in solution 3,
Ceq = J(C ′ − (1/bk)bC ′

k) is as sparse as C ′. We can
therefore compute efficiently a sparse Cholesky factor-
ization of CeqC

T
eq and compute y = (CeqC

T
eq)

−1x via
two triangular solves.

1.3 Special case t∗ = 0 in (7)

In that case, the original problem (1) has no solution,
even though (7) has one. In this case, the leading
eigenvector of A′ and the kernel o C ′ are parallel, and
only a diverging sequence of points approximates the
supremum of (1).

2 Appendix

See the main paper for notations.

Proposition 2.1 (Xorth ∈ Ω) When n = n′, we have

X ∈ Ω ⇒ Xorth ∈ Ω. More generally, ∀A ∈ R
n×n,

whenever u ∈ R
n is a left and right eigenvector of A,

then u is also a left and right eigenvector of Aorth.

Note that in general, X and Xorth do not have the
same eigenvectors, here we are lucky because of the
particular constraint induced by Ω.

Proof Since u is eigenvector of A and AT , we can
show that u is a left and right singular vector of A (i.e.
it is a column in U and in V with A = UΣV T ) and
therefore, all other singular vectors in U and V are
orthogonal to u (although X is not necessarily sym-
metric). Therefore, UV T u = cst ·U [1, 0...0]T = cst′ ·u
⇒ Xorthu = cst′ · u. Same with XT

orth. Now we can
show that Xorth ∈ Ω. Since X ∈ Ω, taking u = 1, we
have Xorth1 = cst′1, but because Xorth ∈ O(n), we
have |cst′| = 1, and it is easy to show that the eigen-
value associated with u in A and Aorth have same sign,
so we conclude here that Xorth1 = 1, and likewise
XT

orth1 = 1�
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