
Balanced Graph Matching

Timothee Cour, Praveen Srinivasan and Jianbo Shi
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

{timothee,psrin,jshi }@seas.upenn.edu

Abstract

Graph matching is a fundamental problem in Computer Vision and Machine
Learning. We present two contributions. First, we give a newspectral relaxation
technique for approximate solutions to matching problems,that naturally incor-
porates one-to-one or one-to-many constraints within the relaxation scheme. The
second is a normalization procedure for existing graph matching scoring functions
that can dramatically improve the matching accuracy. It is based on a reinterpre-
tation of the graph matching compatibility matrix as a bipartite graph on edges for
which we seek a bistochastic normalization. We evaluate ourtwo contributions on
a comprehensive test set of random graph matching problems,as well as on image
correspondence problem. Our normalization procedure can be used to improve
the performance of many existing graph matching algorithms, including spectral
matching, graduated assignment and semidefinite programming.

1 Introduction

Many problems of interest in Computer Vision and Machine Learning can be formulated as a prob-
lem of correspondence: finding a mapping between one set of points and another set of points.
Because these point sets can have important internal structure, they are often considered not simply
as point sets, but as two separate graphs. As a result, the correspondence problem is commonly re-
ferred to as graph matching. In this setting, graph nodes represent feature points extracted from each
instance (e.g. a test image and a template image) and graph edges represent relationships between
feature points. The problem of graph matching is to find a mapping between the two node sets that
preserves as much as possible the relationships between nodes.

Because of its combinatorial nature, graph matching is either solved exactly in a very restricted set-
ting (bipartite matching, for example with the Hungarian method) or approximately. Most of the re-
cent literature on graph matching has followed this second path, developing approximate relaxations
to the graph matching problem. In this paper, we make two contributions. The first contribution is
a spectral relaxation for the graph matching problem that incorporates one-to-one or one-to-many
mapping constraints, represented as affine constraints. A new mathematical tool is developed for that
respect, Affinely Constrained Rayleigh Quotients. Our method achieves comparable performance to
state of the art algorithms, while offering much better scalability. Our second contribution relates to
the graph matching scoring function itself, which we argue,is prone to systematic confusion errors.
We show how a proper bistochastic normalization of the graphmatching compatibility matrix is able
to considerably reduce those errors and improve the overallmatching performance. This improve-
ment is demonstrated both for our spectral relaxation algorithm, and for three state of the art graph
matching algorithms: spectral matching, graduated assignment and semidefinite programming.

2 Problem formulation

Attributed Graph We define an attributed graph[1] as a graphG = (V,E,A) where each edge
e = ij ∈ E is assigned an attributeAe, which could be a real number or a vector in case of multi-
attributes. We represent vertex attributes as special edgeattributes, i.e.Aii for a vertexi. For
example, the nodes could represent feature points with attributes for spatial location/orientation and
image feature descriptors, while edge attributes could represent spatial relationships between two
nodes such as relative position/orientation.

Graph Matching Cost Let G = (V,E,A), G′ = (V ′, E′, A′) be two attributed graphs. We want
to find a mapping betweenV andV ′ that best preserves the attributes between edgese = ij ∈ E
ande′ = i′j′ ∈ E′. Equivalently, we seek a set of correspondences, or matchesM = {ii′} so as to
maximize the graph matching score, defined as:

ǫGM (M) =
∑

ii′∈M,jj′∈M

f(Aij , A
′
i′j′) =

∑

e∼e′

f(Ae, A
′
e′), (1)

with the shorthand notatione ∼ e′ iff ii′ ∈ M, jj′ ∈ M . The functionf(·, ·) measures the similarity
between edge attributes. As a special case,f(Aii, A

′
i′i′) is simply the score associated with the

matchii′. In the rest of the paper, we letn = |V |, m = |E|, and likewise forn′,m′.

Formulation as Integer Quadratic Program We explain here how to rewrite (1) in a more man-
ageable form. Let us representM as a binary vectorx ∈ {0, 1}nn′

: xii′ = 1 iff ii′ ∈ M . For most
problems, one requires the matching to have a special structure, such as one-to-one or one-to-many:
this is themapping constraint. For one-to-one matching, this is

∑

i′ xii′ = 1 and
∑

i xii′ = 1 (with
x binary), andM is a permutation matrix. In general, this is an affine inequality constraint of the
form Cx ≤ b. With those notations, (1) takes the form of an Integer Quadratic Program (IQP):

max ǫ(x) = xTWx s.t. Cx ≤ b, x ∈ {0, 1}nn′

(2)

W is ann′ × nn′ compatibility matrix withWii′,jj′ = f(Aij , A
′
i′j′). In general such IQP is NP-

hard, and approximate solutions are needed.

Graph Matching Relaxations Continuous relaxations of the IQP (2) are among the most success-
ful methods for non-bipartite graph matching, and so we focus on them. We review three state of the
art matching algorithms: semidefinite programming (SDP) [2, 3], graduated assignment (GA) [4],
and spectral matching (SM) [5]. We also introduce a new method, Spectral Matching with Affine
Constraints (SMAC) that provides a tigher relaxation than SM (and more accurate results in our ex-
periments) while still retaining the speed and scalabilitybenefits of spectral methods, which we also
quantify in our evaluations. All of these methods relax the original IQP into a continuous program
(removing thex ∈ {0, 1} constraint), so we omit this step in the derivations below.

SDP Relaxation In [2], the authors rewrite the objective as a matrix innner product: xTWx =

〈X,Weq〉, whereX = [1;x]
T
[1;x] is a (nn′ + 1) × (nn′ + 1) rank-one matrix andWeq =

[

0 dT/2
d/2 W − D

]

, whered = diag(W) andD is a diagonal matrix of diagonald. The non-convex

rank-one constraint is further relaxed by only requiringX to be positive semi-definite. Finally the
relaxation is:max 〈X,Weq〉 s.t. 〈X,C

(i)
eq 〉 ≤ b

(i)
eq ,X � 0, for suitableCeq, beq. The relaxation

squares the problem size, which we will see, prevents SDP from scaling to large problems.

Graduated Assignment GA[4] relaxes the IQP into a non-convex quadratic program (QP) by re-
moving the constraintx ∈ {0, 1}. It then solves a sequence of convex approximations, each time by
maximizing a Taylor expansion of the QP around the previous approximate solution. The accuracy
of the approximation is controlled by a continuation parameter, annealed after each iteration.

Spectral Matching (SM) In [5], the authors drop the constraintCx ≤ b during relaxation and only
incorporate it during the discretization step. The resulting program:max xTWx s.t. ||x|| = 1,
which is the same asmax xTWx

xTx
, can be solved by computing the leading eigenvectorx of W . It

verifiesx ≥ 0 whenW is nonnegative, by Perron-Frobenius’ theorem.

3 Spectral Matching with Affine Constraint (SMAC)

We present hereour first contribution, SMAC . Our method is closely related to the spectral match-
ing formulation of [5], but we are able to impose affine constraintsCx = b on the relaxed solution.
We demonstrate later that the ability to maintain this constraint, coupled with scalability and speed
of spectral methods, results in a very effective solution tograph matching. We solve the following:

max
xTWx

xTx
s.t. Cx = b (3)

Note, for one-to-one matching the objectivecoincides with the IQPfor binaryx sincexTx = n.

Computational Solution We can formulate (3) as maximization of aRayleigh quotient under
affine constraint. While the case oflinear constraints has been addressed previously[6], imposing
affine constraints is novel. We fully address this class of problem in thesupplementary material1

and give a brief summary here. The solution to (3) is given by the leading eigenpair of
PCWPC x = λx, (4)

wherex is scaled so thatCx = b exactly. We introducedPC = Inn′ − CT
eq(CeqC

T
eq)

−1Ceq and
Ceq = [Ik−1, 0] (C − (1/bk)bCk), whereCk, bk denote the last row ofC, b andk = # constraints.

Discretization We show here how to tighten our approximation during the discretization step in
the case of one-to-one matching (we can fall back to this caseby introducing dummy nodes). Let
us assume for a moment thatn = n′. It is a well known result that for anyn × n matrix X, X
is apermutationmatrix iff X1 = XT1 = 1, X is orthogonal, andX ≥ 0 elementwise. We show
here we can obtain a tighter relaxation byincorporating the first 2 (out of 3) constraintsas a post-
processing before the final discretization. We carry on the following steps even whenn 6= n′: 1)
reshape the solutionx of (3) into an × n′ matrixX, 2) compute the best orthogonal approximation
Xorth of X. It can be computed using the SVD decompositionX = UΣV T , similarly to [7]:
Xorth = arg min {||X − Q|| : Q ∈ O(n, n′)} = UV T , whereO(n, n′) denotes the orthogonal
matrices ofRn×n′

, and3) discretizeXorth like the other methods, as explained in the results section.
The following proposition showsXorth is orthogonal and satisfies the affine constraint, as promised.

Proposition 3.1 (Xorth satisfies the affine constraint)If u is leftand right eigenvector of a matrix
Y , thenu is left and right eigenvector ofYorth. Corollary: whenn = n′, Xorth1 = Xorth

T1 = 1.

Proof: see supplementary materials. Note that in general,X and Xorth do not have the same
eigenvectors, here we are lucky because of the particular constraint induced byC, b.

Computational Cost The cost of this algorithm is dominated by the computation ofthe leading
eigenvector of (4), which is function of two terms: 1) numberof matrix-vector operations required
in an eigensolver (which we can fix, as convergence is fast in practice), and 2) cost per matrix-vector
operation.PC is a full matrix, even whenC is sparse, but we showed the operationy := PCx can
be computed inO(nn′) using the Sherman-Morrison formula (for one-to-one matching). Finally,
the total complexity is proportional to the number of non-zero elements inW . If we assume a
full-matching, this isO(mm′), which islinear in the problem description length.

4 How Robust is the Matching?

We ran extensive graph matching experiments on both real image graphs and synthetic graphs with
the algorithms presented above. We noticed a clear trend: the algorithms get confused when there
is ambiguity in the compatibility matrix. Figure 1 shows a typical example of what happens. We
extracted a set of feature points (indexed byi and i′) in two airplane images, and for each edge
e = ij in the first graph, we plotted the most similar edgese′ = i′j′ in the second graph. As we can
see, the first edge plotted has many correspondences everywhere in the image and is thereforeunin-
formative. The second edge on the other hand has correspondences with roughly only 5 locations, it
is informative, and yet its contribution is outweighted by the first edge. The compatibility matrix is
unbalanced. We illustrate next what happens with a synthetic example.

1http://www.seas.upenn.edu/ ˜ timothee/

Figure 1:Representative cliques for graph matching. Blue arrows indicate edgeswith high similarity, showing
2 groups: cliques of type 1 (pairing roughly horizontal edges in the 2 images) areuninformative, cliques of type
2 (pairing vertical edges) aredistinctive.

Figure 2:Left: edges 12 and 13 areuninformativeand make spurious connections of strengthσ to all edges
in the second graph. Edge 23 isinformativeand makes a single connection to the second graph, 2’3’. Middle:
corresponding compatibility matricesW (top: before normalization, bottom: after normalization). Right:
margin as a function ofσ (difference between correct matching score and best runner-up score).

Synthetic noise model example Let us look at a synthetic example to illustrate this concept, on
which the IQP can be solved by brute-force. Figure 2 shows twoisomorphic graphs with 3 nodes. In
our simple noise model, edges12 and13 areuninformativeand make connections to every edge in
the second graph, with strengthσ (our noise parameter). Theinformativeedge23 on the other hand
only connects to2′3′. We displayedWii′,jj′ to visualize the connections. When the noise is small
enough, the optimal matching is the desired permutationp

∗ = {11′, 22′, 33′}, with an initial score
of 8 for σ = 0. We computed the score of the second best permutation as a function of σ (see plot
of margin), and showed that forσ greater thanσ0 ≈ 1.6, p∗ is no longer optimal.W is unbalanced,
with some edges making spurious connections, overwhelmingthe influence of other edges with few
connections. This problem is not incidental. In fact we argue this is the main source of confusion
for graph matching. The next section introduces a normalization algorithm to address this problem.

Figure 3:Left: matching compatibility matrixW and edge similarity matrixS. The shaded areas in each ma-
trix correspond to the same entries. Right: graphical representation ofS, W as a clique potential oni, i′, j, j′.

5 How to balance the Compatibility Matrix

As we saw in the previous section, a main source of confusion for graph matching algorithms is the
unbalance in the compatibility matrix. This confusion occurs when an edgee ∈ E has many good
potential matchese′ ∈ E′. Such an edge isnot discriminativeand its influence should bedecreased.
On the other hand, an edge withsmall number of good matcheswill help disambiguate the optimal
matching. Its influence should beincreased. The following presentsour second contribution,
bistochastic normalization.

5.1 Dual Representation: Matching Compatibility Matrix W vs. Edge Similarity Matrix S

The similarity functionf(·, ·) can be interpreted in two ways: either as asimilarity between edges
ij ∈ E and i′j′ ∈ E′, or as acompatibilitybetween match hypothesisii′ ∈ M and jj′ ∈ M .
We define thesimilarity matrix S of sizem × m′ asSij,i′j′ = f(Aij , A

′
i′j′), and (as before) the

compatibility matrix W of sizenn′ × nn′ asWii′,jj′ = f(Aij , A
′
i′j′), see Figure 3. Each vertexi

in the first graph should ideally match to a small number of verticesi′ in the second graph. Similarly,
each edgee = ij ∈ E should also match to a small number of edgese′ = i′j′ ∈ E′. Although this
constraint would be very hard to enforce, we approach this behavior by normalizing the influence
of each edge. This corresponds to having each row and column in S (not W !) sum to one, in other
words,S should be bistochastic.

5.2 Bistochastic Normalization of Edge Similarity Matrix S

Recall we are given a compatibility matrixW . Can we enforce its dual representationS to be bis-
tochastic? One problem is that, even thoughW is square (of sizenn′×nn′), S could be rectangular
(of sizem × m′), in which case its rows and columns cannot both sum to 1. We define am × m′

matrixB to beRectangular Bistochasticif it satisfies:B1m′ = 1m andBT1m = (m/m′)1m′ . We
can formulate the normalization as solving the following balancing problem:

Find (D,D′) diagonal matrices of orderm,m′ s.t. DSD′ is rectangular bistochastic
(5)

We propose the following algorithm to solve (5), and then show its correctness.

1. Input: compatibility matrix W, of sizenn′ × nn′

2. ConvertW to S: Sij,i′j′ = Wii′,jj′

3. repeat until convergence

(a) normalize the rows ofS: St+1
ij,i′j′ := St

ij,i′j′/
∑

k′l′ St
ij,k′l′

(b) normalize the columns ofS: St+2
ij,i′j′ := St+1

ij,i′j′/
∑

kl S
t+1
kl,i′j′

4. Convert backS to W , outputW

Proposition 5.1 (Existence and Uniqueness of (D,D’))Under the conditionS > 0 elementwise,
Problem (5) has a unique solution(D,D′), up to a scale factor.D andD′ can be found by iteratively
normalizing the rows and columns ofS.

Proof Let S̄ = S ⊗ 1m′×m, which is square. SincēS > 0 elementwise, we can apply an existing
version of (5.1) for square matrices[8]. We conclude the proof by noticing that normalizing rows and
columns ofS̄ preserves kronecker structure:D̄S̄D̄′ = (D⊗1m′×m′)(S ⊗1m′×m)(D′⊗1m×m) =
mm′DSD′ ⊗ 1m′×m, and so(m2D,m′D′) is solution forS iff (D̄, D̄′) is solution forS̄ �

We illustrate in Figure 2 the improvement of normalization on our previous synthetic example of
noise model. Spurious correspondences are suppressed and informative correspondances such as
W23,2′3′ are enhanced, which makes the correct correspondence clearer. The plot on the right shows
that normalization makes the matching robust to arbitrarily large noise in this model, while un-
normalized correspondences will eventually result in incorrect matchings.

6 Experimental Results

Discretization and Implementation Details Because all of the methods described are continuous
relaxations, a post-processing step is needed to discretize the continuous solution while satisfying
the desired constraints. Given an initial solution estimate, GA finds a near-discrete local minimum
of the IQP by solving a series of Taylor approximations. We can therefore use GA as follows: 1)
initialize GA with the relaxed solution of each algorithm, and 2) discretize the output of GA with
a simple greedy procedure described in [5].Software: For SDP, we used the popular SeDuMi [9]
optimization package. Spectral matching and SMAC were implemented using the standard Lanczos
eigensolver available with MATLAB, and we implemented an optimized version of GA in C++.

6.1 One-to-one Attributed Graph Matching on Random Graphs

Following [4], we performed a comprehensive evaluation of the 4 algorithms on random one-to-one
graph matching problems. For each matching problem, we constructed a graphG with n = 20
nodes, andm random edges (m = 10%n2 in a first series of experiments). Each edgeij ∈ E, was
assigned a random attributeAij distributed uniformly in[0, 1]. We then created a perturbed graphG′

by adding noise on the edge attributes:A′
i′j′ = Ap(i)p(j) +noise, wherep is a random permutation;

the noise was distributed uniformly in[0, σ], σ varying from 0 to 6. The compatibility matrixW
was computed from graphsG,G′ as follows:Wii′,jj′ = exp(−|Aij − A′

i′j′ |2),∀ij ∈ E, i′j′ ∈ E′.
For each noise level we generated 100 different matching problems and computed the average error
rate by comparing the discretized matching to the ground truth permutation.

Effect of Normalization on each method We computed the average error rates with and without
normalization of the compatibility matrixW , for each method: SDP, GA, SM and SMAC, see Figure
4. We can see dramatic improvement due to normalization, regardless of the relaxation method used.
At higher noise levels, all methods had a 2 to 3-fold decreasein error rate.

Comparison Across Methods We plotted the performance of all 4 methods usingnormalized
compatibility matrices in Figure 5 (left), again, with 100 trials per noise level. We can see that SDP
and SMAC give comparable performance, while GA and especially SM do worse. These results
validate SMAC with normalization as a state-of-the-art relaxation method for graph matching.

Influence of edge density and graph size We experimented with varying edge density: noise
σ = 2, n = 20, edge density varying from 10% to 100% by increments of 10% with 20 trials per
increment. For SMAC, the normalization resulted in an average absolute error reduction of 60%,
and for all density levels the reduction was at least 40%. ForSDP, the respective figures were 31%,
20%. We also did the same experiments, but with fixed edge density and varying graph sizes, from
10 to 100 nodes. For SMAC, normalization resulted in an average absolute error reduction of 52%;
for all graph sizes the reduction was at least 40%.

Scalability and Speed In addition to accuracy, scalability and speed of the methods are also im-
portant considerations. Matching problems arising from images and other sensor data (e.g., range

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Error rate vs. Noise level

Noise level

A
ve

ra
ge

 E
rr

or
 R

at
e

GA
GA (Norm.)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Error rate vs. Noise level

Noise level

A
ve

ra
ge

 E
rr

or
 R

at
e

SDP
SDP (Norm.)

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Error rate vs. Noise level

Noise level

A
ve

ra
ge

 E
rr

or
 R

at
e

SM
SM (Norm.)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Error rate vs. Noise level

Noise level

A
ve

ra
ge

 E
rr

or
 R

at
e

SMAC
SMAC (Norm.)

Figure 4: Comparison of matching performance with normalized and unnormalizedcompatibility matrices.
Axes are error rate vs. noise level. In all cases (GA, SDP, SM, SMAC), the error rate decreases substantially.

scans) may have hundreds of nodes in each graph. As mentionedpreviously, the SDP relaxation
squares the problem size (in addition to requiring expensive solvers), greatly impacting its speed
and scalability. Figure 5 (middle and right) demonstrates this. For a set of random one-to-one
matching problems of varying sizen (horizontal axis), we averaged thetime for computing the re-
laxed solutionof all four methods (10 trials for eachn). We can see that SDP scales quite poorly
(almost 30 minutes forn = 30). In addition, on a machine with 2GB of RAM, SDP typically ranout
of memory forn = 60. By contrast, SMAC and SM scale easily to much larger problems (n = 200).

6.2 Image correspondence

We also tested the effect of normalization on a simple but instructive image correspondence task. In
each of two images to match, we formed a multiple attribute graph by sub-samplingn = 100 canny
edge points as graph nodes. Each pair of feature pointse = ij within 30 pixels was assigned two
attributes: angle∠e = ∠

−→
ij and distanced(e) = ||

−→
ij ||. S was computed as follows:S(e, e′) = 1

iff cos(∠e′ − ∠e) > cos π/8 and |d(e)−d(e′)|
min(d(e),d(e′)) < 0.5. By using simple geometric attributes, we

emphasized the effect of normalization on the energy function, rather than feature design.

Figure 6 shows an image correspondence example between the two airplane images of Figure 1.
We display the result of SMAC with and without normalization. Correspondence is represented
by similarly colored dots. Clearly, normalization improved the correspondence result. Without
normalization, large systematic errors are made, such as mapping the bottom of one plane to the top
of the other. With normalization these errors are largely eliminated.

Let us return to Figure 1 to see the effect of normalization onS(e, e′). As we saw, there are roughly
2 types of connections: 1) horizontal edges (uninformative) and 2) vertical edges (discriminative).
Normalization exploits this disparity to enhance the latter edges: before normalization, each con-
nection contributed up to1.0 to the overall matching score. After normalization, connections of type
2 contributed up to 0.64 to the overall matching score, versus 0.08 for connections of type 1, which
is 8 times more. We can view normalization as imposing an upper bound on the contribution of each
connection: the upper bound is smaller for spurious matches, and higher for discriminative matches.

7 Conclusion

While recent literature mostly focuses on improving relaxation methods for graph matching prob-
lems, we contribute both an improved relaxation algorithm,SMAC, and a method for improving
the energy function itself, graph balancing with bistochastic normalization. In our experiments,
SMAC outperformed GA and SM, with similar accuracy to SDP, italso scaled much better than
SDP. We motivate the normalization with an intuitive example, showing it improves noise tolerance
by enhancing informative matches and de-enhancing uninformative matches. The experiments we
performed on random one-to-one matchings show that normalization dramatically improves both
our relaxation method SMAC, and the three algorithms mentioned. We also demonstrated the value
of normalization for establishing one-to-one correspondences between image pairs. Normalization
imposes an upper bound on the score contribution of each edgein proportion to its saliency.

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Error rate vs. Noise level

Noise level

A
ve

ra
ge

 E
rr

or
 R

at
e

SM (Norm.)
SMAC (Norm.)
GA (Norm.)
SDP (Norm.)

0 50 100 150
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Problem Size (|V|=|V’| = # of nodes)

C
P

U
 ti

m
e

in
 s

ec
on

ds
 (

in
 lo

g
sc

al
e)

Computation Time vs. Graph Size

Spectral Matching
Spectral Matching with affine Constraint
Graduated Assignment
SDP

0 50 100 150
0

5

10

15

20

25

30

35

Problem Size (|V|=|V’| = # of nodes)

C
P

U
 ti

m
e

in
 s

ec
on

ds

Computation Time vs. Graph Size

Spectral Matching
Spectral Matching with Affine Constraint
Graduated Assignment

Figure 5:Left: comparison of different methods withnormalized compatibility matrices. Axes: vertical is
error rate averaged over 100 trials; horizontal is noise level. SMAC achieves comparable performance to SDP.
Middle,right: computation times of graph matching methods (left: log-scale,right: linear scale).

Figure 6:Image correspondence via SMAC with and without normalization; like colors indicate matches.

References

[1] Marcello Pelillo. A unifying framework for relational structure matching. icpr, 02:1316, 1998.

[2] Christian Schellewald and Christoph Schnörr. Probabilistic subgraph matching based on convex relaxation.
In Energy Minimization Methods in Computer Vision and Pattern Recognition, 2005.

[3] P.H.S. Torr. Solving markov random fields using semi definite programming. InArtificial Intelligence and
Statistics, 2003.

[4] S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. InIEEE Transactions
on Pattern Analysis and Machine Intelligence, volume 18, 1996.

[5] Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems using pairwise
constraints. InInternational Conference on Computer Vision, October 2005.

[6] Stella X. Yu and Jianbo Shi. Grouping with bias. InAdvances in Neural Information Processing Systems,
2001.

[7] G.L.Scott and H.C.Longuett-Higgins. An algorithm for associating the features of two images. InPro-
ceedings of the Royal Society of London B, 1991.

[8] Paul Knopp and Richard Sinkhorn. Concerning nonnegative matrices and doubly stochastic matrices.
Pacific J. Math, 2:343–348, 1967.

[9] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.Optimization
Methods and Software, 11–12:625–653, 1999. Special issue on Interior Point Methods.

