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Abstract

Graph matching is a fundamental problem in Computer Visiod ®lachine
Learning. We present two contributions. First, we give a spectral relaxation
technique for approximate solutions to matching probletmat naturally incor-
porates one-to-one or one-to-many constraints withinekexation scheme. The
second is a normalization procedure for existing graph hiagcscoring functions
that can dramatically improve the matching accuracy. lisdd on a reinterpre-
tation of the graph matching compatibility matrix as a bijgargraph on edges for
which we seek a bistochastic normalization. We evaluatévemicontributions on
a comprehensive test set of random graph matching probtsweell as on image
correspondence problem. Our normalization procedure eamsbd to improve
the performance of many existing graph matching algorithmguding spectral
matching, graduated assignment and semidefinite progragami

1 Introduction

Many problems of interest in Computer Vision and Machinerbe® can be formulated as a prob-
lem of correspondence: finding a mapping between one setinfspand another set of points.
Because these point sets can have important internalstelithey are often considered not simply
as point sets, but as two separate graphs. As a result, ttespondence problem is commonly re-
ferred to as graph matching. In this setting, graph nodegsept feature points extracted from each
instance (e.g. a test image and a template image) and graelk egpresent relationships between
feature points. The problem of graph matching is to find a nmappetween the two node sets that
preserves as much as possible the relationships betwees.nod

Because of its combinatorial nature, graph matching isegblved exactly in a very restricted set-
ting (bipartite matching, for example with the Hungarianthoel) or approximately. Most of the re-
cent literature on graph matching has followed this secatld,mleveloping approximate relaxations
to the graph matching problem. In this paper, we make tworitmritons. The first contribution is
a spectral relaxation for the graph matching problem thedrporates one-to-one or one-to-many
mapping constraints, represented as affine constraintewAmathematical tool is developed for that
respect, Affinely Constrained Rayleigh Quotients. Our rodtichieves comparable performance to
state of the art algorithms, while offering much better abdity. Our second contribution relates to
the graph matching scoring function itself, which we ardgsi@rone to systematic confusion errors.
We show how a proper bistochastic normalization of the graptthing compatibility matrix is able
to considerably reduce those errors and improve the oveithing performance. This improve-
ment is demonstrated both for our spectral relaxation élgar and for three state of the art graph
matching algorithms: spectral matching, graduated assgih and semidefinite programming.



2 Problem formulation

Attributed Graph ~ We define an attributed graph[1] as a graph= (V, E, A) where each edge

e = 1ij € FE is assigned an attributé., which could be a real number or a vector in case of multi-
attributes. We represent vertex attributes as special attgbutes, i.e. A;; for a vertexi. For
example, the nodes could represent feature points witbatiess for spatial location/orientation and
image feature descriptors, while edge attributes couldessmt spatial relationships between two
nodes such as relative position/orientation.

Graph Matching Cost LetG = (V, E, A),G' = (V', E’, A’) be two attributed graphs. We want
to find a mapping betweeVi andV’ that best preserves the attributes between edges; € F
ande’ = i'j’ € E’. Equivalently, we seek a set of correspondences, or mafighes{i:'} so as to
maximize the graph matching score, defined as:

cau(M) = > f(Aij, Apy) = f(Ae, AL), 1)
W'eM,jjleM e~e’
with the shorthand notation~ €’ iff i’ € M, jj' € M. The functionf(-, -) measures the similarity
between edge attributes. As a special cggel;;, A.,,/) is simply the score associated with the
matchii’. In the rest of the paper, we let= V|, m = | E|, and likewise fom’, m’'.

Formulation as Integer Quadratic Program We explain here how to rewrite (1) in a more man-
ageable form. Let us represelt as a binary vectar: € {0, 1}"”': zi = 1iff i’ € M. For most
problems, one requires the matching to have a special stayguch as one-to-one or one-to-many:
this is themapping constraintFor one-to-one matching, this}s ;, =, = 1 and)_, z;» = 1 (with

x binary), andM is a permutation matrix. In general, this is an affine ineiquabnstraint of the
form C'z < b. With those notations, (1) takes the form of an Integer QaégadProgram (IQP):

max  e(z) =2 Wz st Cz<b, zc{0,1}" 2

Wis ann’ x nn’ compatibility matrix withW;;. ;;» = f(Aq;, Aj,;/). In general such IQP is NP-
hard, and approximate solutions are needed.

Graph Matching Relaxations Continuous relaxations of the IQP (2) are among the mosessec
ful methods for non-bipartite graph matching, and so we $amuthem. We review three state of the
art matching algorithms: semidefinite programming (SDR)3[2 graduated assignment (GA) [4],
and spectral matching (SM) [5]. We also introduce a new nttiSpectral Matching with Affine
Constraints (SMAC) that provides a tigher relaxation thish(&8nd more accurate results in our ex-
periments) while still retaining the speed and scalabiigpefits of spectral methods, which we also
quantify in our evaluations. All of these methods relax thiginal IQP into a continuous program
(removing thex € {0, 1} constraint), so we omit this step in the derivations below.

SDP Relaxation In [2], the authors rewrite the objective as a matrix innnexdpict: ='Wz =

(X, Weq), WhereX = [1:2]"[1;2] is a (nn/ + 1) x (nn’ + 1) rank-one matrix andV,, =
T
[ d92 Vg —/QD , Whered = diag(W) andD is a diagonal matrix of diagonéal The non-convex

rank-one constraint is further relaxed by only requirmgo be positive semi-definite. Finally the

relaxation ismax (X, W,,) s.t. (X, O,EQ} < bé’,},X > 0, for suitableC.q, b.q. The relaxation
squares the problem size, which we will see, prevents SDR $ealing to large problems.

Graduated Assignment GA[4] relaxes the IQP into a non-convex quadratic program)(Ry re-
moving the constraint € {0, 1}. It then solves a sequence of convex approximations, eaehtty
maximizing a Taylor expansion of the QP around the previgums@imate solution. The accuracy
of the approximation is controlled by a continuation parsnennealed after each iteration.

Spectral Matching (SM) In [5], the authors drop the constraifit: < b during relaxation and only
incorporate it during the discretization step. The resglprogrammax z'Wz st ||z|| =1,

which is the same asax £ W“’ can be solved by computing the leading eigenvectof /. It
verifiesz > 0 whenW is nonnegatlve by Perron-Frobenius’ theorem.




3 Spectral Matching with Affine Constraint (SMAC)

We present hereur first contribution, SMAC . Our method is closely related to the spectral match-
ing formulation of [5], but we are able to impose affine coaistisC'z = b on the relaxed solution.
We demonstrate later that the ability to maintain this a@ist, coupled with scalability and speed
of spectral methods, results in a very effective solutiograph matching. We solve the following:

T Wa
T

st. Cx=0b )

max

x

Note, for one-to-one matching the objects@ncides with the IQFor binaryz sincez "z = n.

x

Computational Solution We can formulate (3) as maximization ofRayleigh quotient under
affine constraint While the case ofinear constraints has been addressed previously[6], imposing
affine constraints is novel. We fully address this class obfam in thesupplementary material
and give a brief summary here. The solution to (3) is giverhayléading eigenpair of

PcWPe x =)z, 4
wherez is scaled so thaf'z = b exactly. We introduced’c = I,y — C7,(C.,CZ,)'C., and
Ceqg = [Ix—1,0] (C — (1/b)bC%), whereCy, by, denote the last row af’, b andk = # constraints.

Discretization We show here how to tighten our approximation during therdiszation step in
the case of one-to-one matching (we can fall back to this bgsetroducing dummy nodes). Let
us assume for a moment that= n’. It is a well known result that for any x n matrix X, X

is apermutationmatrixiff X1 = XT1 = 1, X is orthogonal, and{ > 0 elementwise. We show
here we can obtain a tighter relaxationibgorporating the first 2 (out of 3) constraings a post-
processing before the final discretization. We carry on tilewing steps even when # n': 1)
reshape the solutian of (3) into an x n’ matrix X, 2) compute the best orthogonal approximation
Xoren Of X. It can be computed using the SVD decomposition= UXV7, similarly to [7]:
Xoren = argmin{||X — Q|| : Q € O(n,n’)} = UVT, whereO(n,n’) denotes the orthogonal
matrices ofR™*"’, and3) discretizeX ., like the other methods, as explained in the results section.
The following proposition show¥,,.,;, is orthogonal and satisfies the affine constraint, as pramise

Proposition 3.1 (X4, satisfies the affine constraint)If u is leftand right eigenvector of a matrix
Y, thenu is left and right eigenvector df,,,. Corollary: whenn = n/, Xorinl = Xopen ' 1 = 1.

Proof: see supplementary materials. Note that in geneXahnd X,,.,;, do not have the same
eigenvectors, here we are lucky because of the particuteti@nt induced by, b.

Computational Cost The cost of this algorithm is dominated by the computatiothefleading
eigenvector of (4), which is function of two terms: 1) numbé&matrix-vector operations required
in an eigensolver (which we can fix, as convergence is fagtictigze), and 2) cost per matrix-vector
operation.P¢ is a full matrix, even whei' is sparse, but we showed the operation= Pz can
be computed irO(nn") using the Sherman-Morrison formula (for one-to-one maighi Finally,
the total complexity is proportional to the number of nomezelements inl/. If we assume a
full-matching, this isO(mm’), which islinear in the problem description length.

4 How Robust is the Matching?

We ran extensive graph matching experiments on both regeérgeaphs and synthetic graphs with
the algorithms presented above. We noticed a clear treedalgorithms get confused when there
is ambiguity in the compatibility matrix. Figure 1 shows pigal example of what happens. We
extracted a set of feature points (indexedibgndi’) in two airplane images, and for each edge
e = 1j in the first graph, we plotted the most similar edges- «’j’ in the second graph. As we can
see, the first edge plotted has many correspondences evag/imtthe image and is therefarain-
formative The second edge on the other hand has correspondencesugtiiyr only 5 locations, it

is informative and yet its contribution is outweighted by the first edgee €ompatibility matrix is
unbalancedWe illustrate next what happens with a synthetic example.

hitp://www.seas.upenn.edu/ ~ timothee/



Figure 1:Representative cliques for graph matching. Blue arrows indicate edtielsigh similarity, showing
2 groups: cliques of type 1 (pairing roughly horizontal edges in the 2é@s)eayeuninformative cliques of type
2 (pairing vertical edges) adistinctive
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Figure 2:Left: edges 12 and 13 amminformativeand make spurious connections of strengtto all edges

in the second graph. Edge 23iidormativeand makes a single connection to the second graph, 2'3’. Middle:
corresponding compatibility matricdd” (top: before normalization, bottom: after normalization). Right:
margin as a function of (difference between correct matching score and best runnezeup)s

Synthetic noise model example Let us look at a synthetic example to illustrate this concept
which the IQP can be solved by brute-force. Figure 2 showssamorphic graphs with 3 nodes. In
our simple noise model, edgég and13 areuninformativeand make connections to every edge in
the second graph, with strength(our noise parameter). Theformativeedge23 on the other hand
only connects t@'3’. We displayed?,; ;, to visualize the connections. When the noise is small
enough, the optimal matching is the desired permutatiors= {11’,22’,33'}, with an initial score
of 8 for o = 0. We computed the score of the second best permutation as@oiunf s (see plot

of margin), and showed that fergreater thaw, ~ 1.6, p* is no longer optimall¥’ is unbalanced
with some edges making spurious connections, overwhelthmfluence of other edges with few
connections. This problem is not incidental. In fact we arthis is the main source of confusion
for graph matching. The next section introduces a normi@izalgorithm to address this problem.
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Figure 3:Left: matching compatibility matri¥}” and edge similarity matri¥. The shaded areas in each ma-
trix correspond to the same entries. Right: graphical representatigii%fas a clique potential oni’, j, 5’

5 How to balance the Compatibility Matrix

As we saw in the previous section, a main source of confusipgraph matching algorithms is the
unbalance in the compatibility matrix. This confusion ocwhen an edge € E has many good
potential matcheg’ € E’. Such an edge isot discriminativeand its influence should liecreased
On the other hand, an edge wimall number of good matchesll help disambiguate the optimal
matching. Its influence should becreased The following present®ur second contribution,
bistochastic normalization

5.1 Dual Representation: Matching Compatibility Matrix W vs. Edge Similarity Matrix S

The similarity functionf (-, -) can be interpreted in two ways: either asimilarity between edges
ij € F andi'j’ € E’, or as acompatibility between match hypothesis € M andj;’ € M.
We define thesimilarity matrix S of sizem x m’ asSj; ;v = f(Aij, Ay ), and (as before) the
compatibility matrix W of sizenn’ x nn'" asW;y ;= f(Ai;, Aj,;), see Figure 3. Each vertéx
in the first graph should ideally match to a small number ofizes:’ in the second graph. Similarly,
each edge = ij € F should also match to a small number of edges i'j’ € E’. Although this
constraint would be very hard to enforce, we approach thiswier by normalizing the influence
of each edge. This corresponds to having each row and coluirfriot 1¥!) sum to one, in other
words,S should be bistochastic

5.2 Bistochastic Normalization of Edge Similarity Matrix S

Recall we are given a compatibility matri¥’. Can we enforce its dual representati®mo be bis-
tochastic? One problem is that, even tholighs square (of sizen’ x nn’), S could be rectangular
(of sizem x m’), in which case its rows and columns cannot both sum to 1. \linedam x m’
matrix B to beRectangular Bistochastidf it satisfies: B1,,, = 1,, andB'1,,, = (m/m’)1,,,. We
can formulate the normalization as solving the followindpbaing problem:

Find (D, D’) diagonal matrices of orden,m’ s.t. DSD’ isrectangular bistochastic

()

We propose the following algorithm to solve (5), and thervshie correctness.

1. Input: compatibility matrix W, of sizen’ x nn’
2. ConvertiV to S: Sij,i’j’ = Wij,/,jj/

3. repeat until convergence

i . t+1 . ot t
(@) normalize the rows of: S, = ST, i/ D S

H . t+2 . gt+1 t+1
(b) normalize the columns &f: S5, := Sim /> 2k Sk ivir

4. Convert backs to W, outputiv/




Proposition 5.1 (Existence and Uniqueness of (D,D’)lnder the conditionS > 0 elementwise,
Problem (5) has a unique solutig®, D), up to a scale factorD and D’ can be found by iteratively
normalizing the rows and columns &f

Proof LetS = S ® 1,,/xm, Which is square. Sincé > 0 elementwise, we can apply an existing
version of (5.1) for square matrices[8]. We conclude th@pby noticing that normalizing rows and

columns ofS preserves kronecker structuSD’ = (D & 1,y s ) (S @ L/ s ) (D' @ Ly ) =
mm/DSD’ @ 1 sm, and sa(m?D, m’D') is solution forS iff (D, D’) is solution forS OJ

We illustrate in Figure 2 the improvement of normalizatianaur previous synthetic example of
noise model. Spurious correspondences are suppressedfanddtive correspondances such as
Was o3 are enhanced, which makes the correct correspondencercl&ae plot on the right shows
that normalization makes the matching robust to arbiyrddfge noise in this model, while un-
normalized correspondences will eventually result in inect matchings.

6 Experimental Results

Discretization and Implementation Details Because all of the methods described are continuous
relaxations, a post-processing step is needed to diserdiEzcontinuous solution while satisfying
the desired constraints. Given an initial solution esten&A finds a near-discrete local minimum
of the IQP by solving a series of Taylor approximations. We tteerefore use GA as follows: 1)
initialize GA with the relaxed solution of each algorithrmda2) discretize the output of GA with

a simple greedy procedure described in [Spftware: For SDP, we used the popular SeDuMi [9]
optimization package. Spectral matching and SMAC wereémginted using the standard Lanczos
eigensolver available with MATLAB, and we implemented antimjzed version of GA in C++,

6.1 One-to-one Attributed Graph Matching on Random Graphs

Following [4], we performed a comprehensive evaluatiorhef4 algorithms on random one-to-one
graph matching problems. For each matching problem, wetieated a graplG with n = 20
nodes, andn random edgesi = 10%n? in a first series of experiments). Each edges E, was
assigned a random attributl; distributed uniformly inf0, 1]. We then created a perturbed gragh

by adding noise on the edge attributel;;, = A,;),(;) + noise, wherep is a random permutation;
the noise was distributed uniformly {0, o], o varying from 0 to 6. The compatibility matrik’
was computed from graplts, G’ as follows:W;;/ i+ = exp(—|A4;; — A;,j,|2),Vij e E,i'j e F.

For each noise level we generated 100 different matchinglg@nos and computed the average error
rate by comparing the discretized matching to the grourtth parmutation.

Effect of Normalization on each method We computed the average error rates with and without
normalization of the compatibility matri¥/, for each method: SDP, GA, SM and SMAC, see Figure
4. We can see dramatic improvement due to normalizatioardéess of the relaxation method used.
At higher noise levels, all methods had a 2 to 3-fold decréaseror rate.

Comparison Across Methods We plotted the performance of all 4 methods usimaymalized
compatibility matrices in Figure 5 (left), again, with 1G@ats per noise level. We can see that SDP
and SMAC give comparable performance, while GA and esgdgcs¥ do worse. These results
validate SMAC with normalization as a state-of-the-araxation method for graph matching.

Influence of edge density and graph size We experimented with varying edge density: noise
o = 2, n = 20, edge density varying from 10% to 100% by increments of 10%h &0 trials per
increment. For SMAC, the normalization resulted in an agerabsolute error reduction of 60%,
and for all density levels the reduction was at least 40%.38P, the respective figures were 31%,
20%. We also did the same experiments, but with fixed edgetgieamsl varying graph sizes, from
10 to 100 nodes. For SMAC, normalization resulted in an ayeedbsolute error reduction of 52%;
for all graph sizes the reduction was at least 40%.

Scalability and Speed In addition to accuracy, scalability and speed of the methavé also im-
portant considerations. Matching problems arising frorages and other sensor data (e.g., range
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Figure 4: Comparison of matching performance with normalized and unnormatiaepatibility matrices.
Axes are error rate vs. noise level. In all cases (GA, SDP, SM, SM#h@)error rate decreases substantially.

scans) may have hundreds of nodes in each graph. As mentiwegdusly, the SDP relaxation
squares the problem size (in addition to requiring expensalvers), greatly impacting its speed
and scalability. Figure 5 (middle and right) demonstratés.t For a set of random one-to-one
matching problems of varying size (horizontal axis), we averaged tkieme for computing the re-
laxed solutionof all four methods (10 trials for eacah). We can see that SDP scales quite poorly
(almost 30 minutes far = 30). In addition, on a machine with 2GB of RAM, SDP typically rent

of memory forn = 60. By contrast, SMAC and SM scale easily to much larger problém= 200).

6.2 Image correspondence

We also tested the effect of normalization on a simple butucsve image correspondence task. In
each of two images to match, we formed a multiple attribuégrby sub-sampling = 100 canny
edge points as graph nodes. Each pair of feature peirtsj within 30 pixels was assigned two

attributes: angle‘e = Az'_f and distancel(e) = ||i_j>||. S was computed as followsS(e,e¢’) = 1

iff cos(Le! — Ze) > cosm/8 and% < 0.5. By using simple geometric attributes, we

emphasized the effect of normalization on the energy fonctiather than feature design.

Figure 6 shows an image correspondence example betweewdharplane images of Figure 1.
We display the result of SMAC with and without normalizatioB@orrespondence is represented
by similarly colored dots. Clearly, normalization improvéhe correspondence result. Without
normalization, large systematic errors are made, such ppingthe bottom of one plane to the top
of the other. With normalization these errors are largélyiglated.

Let us return to Figure 1 to see the effect of normalizatior5on ¢’). As we saw, there are roughly
2 types of connections: 1) horizontal edges (uninformaiired 2) vertical edges (discriminative).
Normalization exploits this disparity to enhance the lagidges: before normalization, each con-
nection contributed up t0.0 to the overall matching score. After normalization, coniwers of type

2 contributed up to 0.64 to the overall matching score, \&€08 for connections of type 1, which
is 8 times more. We can view normalization as imposing an uppend on the contribution of each
connection: the upper bound is smaller for spurious mat@reshigher for discriminative matches.

7 Conclusion

While recent literature mostly focuses on improving relaamethods for graph matching prob-
lems, we contribute both an improved relaxation algoritl@WAC, and a method for improving
the energy function itself, graph balancing with bistod¢itasormalization. In our experiments,
SMAC outperformed GA and SM, with similar accuracy to SDRalg#o scaled much better than
SDP. We motivate the normalization with an intuitive exaepghowing it improves noise tolerance
by enhancing informative matches and de-enhancing umirgtive matches. The experiments we
performed on random one-to-one matchings show that naratedh dramatically improves both
our relaxation method SMAC, and the three algorithms meetio We also demonstrated the value
of normalization for establishing one-to-one correspods between image pairs. Normalization
imposes an upper bound on the score contribution of eachieggeportion to its saliency.
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