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Abstract

We address the problem of partially-labeled multiclass classification, where instead of a
single label per instance, the algorithm is given a candidate set of labels, only one of
which is correct. Our setting is motivated by a common scenario in many image and
video collections, where only partial access to labels is available. The goal is to learn
a classifier that can disambiguate the partially-labeled training instances, and generalize
to unseen data. We define an intuitive property of the data distribution that sharply
characterizes the ability to learn in this setting and show that effective learning is possible
even when all the data is only partially labeled. Exploiting this property of the data, we
propose a convex learning formulation based on minimization of a loss function appropriate
for the partial label setting. We analyze the conditions under which our loss function is
asymptotically consistent, as well as its generalization and transductive performance. We
apply our framework to identifying faces culled from web news sources and to naming
characters in TV series and movies; in particular, we annotated and experimented on a
very large video data set and achieve 6% error for character naming on 16 episodes of the
TV series Lost.

Keywords: weakly supervised learning, multiclass classification, convex learning, gener-
alization bounds, names and faces

1. Introduction

We consider a weakly-supervised multiclass classification setting where each instance is
partially labeled: instead of a single label per instance, the algorithm is given a candidate set
of labels, only one of which is correct. A typical example arises in photographs containing
several faces per image and a caption that only specifies who is in the picture but not
which name matches which face. In this setting each face is ambiguously labeled with the
set of names extracted from the caption, see Figure 1 (bottom). Photograph collections
with captions have motivated much recent interest in weakly annotated images and videos
(Duygulu et al., 2002; Barnard et al., 2003; Berg et al., 2004; Gallagher and Chen, 2007).
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Figure 1: Two examples of partial labeling scenarios for naming faces. Top: using a screen-
play, we can tell who is in a movie scene, but for every face in the corresponding
images, the person’s identity is ambiguous (green labels). Bottom: images in
photograph collections and webpages are often tagged ambiguously with several
potential names in the caption or nearby text. In both cases, our goal is to learn
a model from ambiguously labeled examples so as to disambiguate the training
labels and also generalize to unseen examples.

Another motivating example is shown in Figure 1 (top), which shows a setting where we
can obtain plentiful but weakly labeled data: videos and screenplays. Using a screenplay,
we can tell who is in a given scene, but for every detected face in the scene, the person’s
identity is ambiguous: each face is partially labeled with the set of characters appearing at
some point in the scene (Satoh et al., 1999; Everingham et al., 2006; Ramanan et al., 2007).
The goal in each case is to learn a person classifier that can not only disambiguate the labels
of the training faces, but also generalize to unseen data. Learning accurate models for face
and object recognition from such imprecisely annotated images and videos can improve the
performance of many applications, including image retrieval and video summarization.

This partially labeled setting is situated between fully supervised and fully unsuper-
vised learning, but is qualitatively different from the semi-supervised setting where both
labeled and unlabeled data are available. There have been several papers that addressed
this partially labeled (also called ambiguously labeled) problem. Many formulations use
the expectation-maximization-like algorithms to estimate the model parameters and “fill-
in” the labels (Côme et al., 2008; Ambroise et al., 2001; Vannoorenberghe and Smets, 2005;
Jin and Ghahramani, 2002). Most methods involve either non-convex objectives or procedu-
ral, iterative reassignment schemes which come without any guarantees of achieving global
optima of the objective or classification accuracy. To the best of our knowledge, there has
not been theoretical analysis of conditions under which proposed approaches are guaranteed
to learn accurate classifiers. The contributions of this paper are:
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• We show theoretically that effective learning is possible under reasonable distribu-
tional assumptions even when all the data is partially labeled, leading to useful upper
and lower bounds on the true error.

• We propose a convex learning formulation based on this analysis by extending general
multi-class loss functions to handle partial labels.

• We apply our convex learning formulation to the task of identifying faces culled from
web news sources, and to naming characters in TV series. We experiment on a large
data set consisting of 100 hours of video, and in particular achieve 6% (resp. 13%)
error for character naming across 8 (resp. 32) labels on 16 episodes of Lost, consistently
outperforming several strong baselines.

• We contribute the Annotated Faces on TV data set, which contains about 3,000
cropped faces extracted from 8 episodes of the TV show Lost (one face per track).
Each face is registered and annotated with a groundtruth label (there are 40 differ-
ent characters). We also include a subset of those faces with the partial label set
automatically extracted from the screenplay.

• We provide the Convex Learning from Partial Labels Toolbox, an open-source matlab
and C++ implementation of our approach as well as the baseline approach discussed
in the paper. The code includes scripts to illustrate the process on Faces in the Wild
Data Set (Huang et al., 2007a) and our Annotated Faces on TV data set.

The paper is organized as follows.1 We review related work and relevant learning
scenarios in Section 2. We pose the partially labeled learning problem as minimization of an
ambiguous loss in Section 3, and establish upper and lower bounds between the (unobserved)
true loss and the (observed) ambiguous loss in terms of a critical distributional property we
call ambiguity degree. We propose the novel Convex Learning from Partial Labels (CLPL)
formulation in Section 4, and show it offers a tighter approximation to the ambiguous
loss, compared to a straightforward formulation. We derive generalization bounds for the
inductive setting, and in Section 5 also provide bounds for the transductive setting. In
addition, we provide reasonable sufficient conditions that will guarantee a consistent labeling
in a simple case. We show how to solve proposed CLPL optimization problems by reducing
them to more standard supervised optimization problems in Section 6, and provide several
concrete algorithms that can be adapted to our setting, such as support vector machines
and boosting. We then proceed to a series of controlled experiments in Section 7, comparing
CLPL to several baselines on different data sets. We also apply our framework to a naming
task in TV series, where screenplay and closed captions provide ambiguous labels. The code
and data used in the paper can be found at: http://www.vision.grasp.upenn.edu/video.

2. Related Work

We review here the related work for learning under several forms of weak supervision, as
well concrete applications.

1. A preliminary version of this work appeared in Cour et al. (2009). Sections 4.2 to 6 present new material,
and Sections 7 and 8 contain additional experiments, data sets and comparisons.
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2.1 Weakly Supervised Learning

To put the partially-labeled learning problem into perspective, it is useful to lay out sev-
eral related learning scenarios (see Figure 2), ranging from fully supervised (supervised
and multi-label learning), to weakly-supervised (semi-supervised, multi-instance, partially-
labeled), to unsupervised.

supervised

instance label

unsupervised

instance ???

semi-supervised

instance label

instance ???

multi-label

instance label

label

label

multi-instance

instance

instance

instance

label

partial-label

instance label
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Figure 2: Range of supervision in classification. Training may be: supervised (a label is
given for each instance), unsupervised (no label is given for any instance), semi-
supervised (labels are given for some instances), multi-label (each instance can
have multiple labels), multi-instance (a label is given for a group of instances
where at least one instance in the group has the label), or partially-labeled (for
each instance, several possible labels are given, only one of which is correct).

• In semi-supervised learning (Zhu and Goldberg, 2009; Chapelle et al., 2006), the
learner has access to a set of labeled examples as well as a set of unlabeled examples.

• In multi-label learning (Boutell et al., 2004; Tsoumakas et al., 2010), each example
is assigned multiple labels, all of which can be true.

• In multi-instance learning (Dietterich et al., 1997; Andrews and Hofmann, 2004;
Viola et al., 2006), examples are not individually labeled but grouped into sets which
either contain at least one positive example, or only negative examples. A special
case considers the easier scenario where label proportions in each bag are known
(Kuck and de Freitas, 2005), allowing one to compute convergence bounds on the es-
timation error of the correct labels (Quadrianto et al., 2009).

• Finally, in our setting of partially labeled learning, also called ambiguously labeled
learning, each example again is supplied with multiple labels, only one of which is
correct. A formal definition is given in Section 3.

Clearly, these settings can be combined, for example with multi-instance multi-label
learning (MIML) (Zhou and Zhang, 2007), where training instances are associated with
not only multiple instances but also multiple labels. Another combination of interest ap-
pears in a recent paper building on our previous work (Cour et al., 2009) that addresses
the case where sets of instances are ambiguously labeled with candidate labeling sets
(Luo and Orabona, 2010).
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2.2 Learning From Partially-labeled or Ambiguous Data

There have been several papers that addressed the ambiguous label problem. A number of
these use the expectation-maximization algorithm (EM) to estimate the model parameters
and the true label (Côme et al., 2008; Ambroise et al., 2001; Vannoorenberghe and Smets,
2005; Jin and Ghahramani, 2002). For example Jin and Ghahramani (2002) use an EM-like
algorithm with a discriminative log-linear model to disambiguate correct labels from incor-
rect ones. Grandvalet and Bengio (2004) add a minimum entropy term to the set of possi-
ble label distributions, with a non-convex objective as in the case of (Jin and Ghahramani,
2002). Hullermeier and Beringer (2006) propose several non-parametric, instance-based al-
gorithms for ambiguous learning based on greedy heuristics. These papers only report
results on synthetically-created ambiguous labels for data sets such as the UCI repository.
Also, the algorithms proposed rely on iterative non-convex learning.

2.3 Images and Captions

A related multi-class setting is common for images with captions: for example, a photo-
graph of a beach with a palm tree and a boat, where object locations are not specified.
Duygulu et al. (2002) and Barnard et al. (2003) show that such partial supervision can be
sufficient to learn to identify the object locations. The key observation is that while text
and images are separately ambiguous, jointly they complement each other. The text, for
instance, does not mention obvious appearance properties, but the frequent co-occurrence
of a word with a visual element could be an indication of association between the word and a
region in the image. Of course, words in the text without correspondences in the image and
parts of the image not described in the text are virtually inevitable. The problem of nam-
ing image regions can be posed as translation from one language to another. Barnard et al.
(2003) address it using a multi-modal extension to mixture of latent Dirichlet allocations.

2.4 Names and Faces

The specific problem of naming faces in images and videos using text sources has been
addressed in several works (Satoh et al., 1999; Berg et al., 2004; Gallagher and Chen, 2007;
Everingham et al., 2006). There is a vast literature on fully supervised face recognition,
which is out of the scope of this paper. Approaches relevant to ours include Berg et al.
(2004), which aims at clustering face images obtained by detecting faces from images with
captions. Since the name of the depicted people typically appears in the caption, the
resulting set of images is ambiguously labeled if more than one name appears in the caption.
Moreover, in some cases the correct name may not be included in the set of potential
labels for a face. The problem can be solved by using unambiguous images to estimate
discriminant coordinates for the entire data set. The images are clustered in this space and
the process is iterated. Gallagher and Chen (2007) address the similar problem of retrieval
from consumer photo collections, in which several people appear in each image which is
labeled with their names. Instead of estimating a prior probability for each individual,
the algorithm estimates a prior for groups using the ambiguous labels. Unlike Berg et al.
(2004), the method of Gallagher and Chen (2007) does not handle erroneous names in the
captions.

1229



Cour, Sapp and Taskar

2.5 People in Video

In work on video, a wide range of cues has been used to automatically obtain super-
vised data, including: captions or transcripts (Everingham et al., 2006; Cour et al., 2008;
Laptev et al., 2008), sound (Satoh et al., 1999) to obtain the transcript, or clustering based
on clothing, face and hair color within scenes to group instances (Ramanan et al., 2007).
Most of the methods involve either procedural, iterative reassignment schemes or non-convex
optimization.

3. Formulation

In the standard supervised multiclass setting, we have labeled examples S = {(xi, yi)
m
i=1}

from an unknown distribution P (X,Y ) where X ∈ X is the input and Y ∈ {1, . . . , L} is the
class label. In the partially supervised setting we investigate, instead of an unambiguous
single label per instance we have a set of labels, one of which is the correct label for the
instance. We will denote yi = {yi} ∪ zi as the ambiguity set actually observed by the
learning algorithm, where zi ⊆ {1, . . . , L} \ {yi} is a set of additional labels, and yi the
latent groundtruth label which we would like to recover. Throughout the paper, we will
use boldface to denote sets and uppercase to denote random variables with corresponding
lowercase values of random variables. We suppose X,Y,Z are distributed according to an
(unknown) distribution P (X,Y,Z) = P (X)P (Y | X)P (Z | X,Y ) (see Figure 3, right), of
which we only observe samples of the form S = {(xi,yi)

m
i=1} = {(xi, {yi}∪ zi)

m
i=1}. (In case

X is continuous, P (X) is a density with respect to some underlying measure µ on X , but
we will simply refer to the joint P (X,Y,Z) as a distribution.) With the above definitions,
yi ∈ yi, zi ⊂ yi, yi /∈ zi and Y ∈ Y,Z ⊂ Y, Y /∈ Z.

Clearly, our setup generalizes the standard semi-supervised setting where some examples
are labeled and some are unlabeled: an example is labeled when the corresponding ambiguity
set yi is a singleton, and unlabeled when yi includes all the labels. However, we do not
explicitly consider the semi-supervised setting this paper, and our analysis below provides
essentially vacuous bounds for the semi-supervised case. Instead, we consider the middle-
ground, where all examples are partially labeled as described in our motivating examples
and analyze assumptions under which learning can be guaranteed to succeed.

In order to learn from ambiguous data, we must make some assumptions about the
distribution P (Z | X,Y ). Consider a very simple ambiguity pattern that makes accurate
learning impossible: L = 3, |zi| = 1 and label 1 is present in every set yi, for all i. Then
we cannot distinguish between the case where 1 is the true label of every example, and the
case where it is not a label of any example. More generally, if two labels always co-occur
when present in y, we cannot tell them apart. In order to disallow this case, below we
will make an assumption on the distribution P (Z | X,Y ) that ensures some diversity in
the ambiguity set. This assumption is often satisfied in practice. For example, consider
our initial motivation of naming characters in TV shows, where the ambiguity set for any
given detected face in a scene is given by the set of characters occurring at some point in
that scene. In Figure 3 (left), we show the co-occurrence graph of characters in a season
of the TV show Lost, where the thickness of the edges corresponds to the number of times
characters share a scene. This suggests that for most characters, ambiguity sets are diverse
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Figure 3: Left: Co-occurrence graph of the top characters across 16 episodes of Lost. Edge
thickness corresponds to the co-occurrence frequency of characters. Right: The
model of the data generation process: (X,Y) are observed, (Y,Z) are hidden,
with Y = Y ∪ Z.

Symbol Meaning

x,X observed input value/variable: x,X ∈ X
y, Y hidden label value/variable: y, Y ∈ {1, . . . , L}
z,Z hidden additional label set/variable: z,Z ⊆ {1, . . . , L}
y,Y observed label set/variable: y = {y} ∪ z,Y = {Y } ∪ Z

h(x), h(X) multiclass classifier mapping h : X 7→ {1, . . . , L}
L(h(x), y),LA(h(x),y) standard and partial 0/1 loss

Table 1: Summary of notation used.

and we can expect that the ambiguity degree is small. A more quantitative diagram will
be given in Figure 11 (left).

Many formulations of fully-supervised multiclass learning have been proposed based on
minimization of convex upper bounds on risk, usually, the expected 0/1 loss (Zhang, 2004):

0/1 loss: L(h(x), y) = 1(h(x) 6= y),

where h(x) : X 7→ {1, . . . , L} is a multiclass classifier.
We cannot evaluate the 0/1 loss using our partially labeled training data. We define a

surrogate loss which we can evaluate, and we call ambiguous or partial 0/1 loss (where A
stands for ambiguous):

Partial 0/1 loss: LA(h(x),y) = 1(h(x) /∈ y).
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3.1 Connection Between Partial and Standard 0/1 Losses

An obvious observation is that the partial loss is an underestimate of the true loss. However,
in the ambiguous learning setting we would like to minimize the true 0/1 loss, with access
only to the partial loss. Therefore we need a way to upper-bound the 0/1 loss using
the partial loss. We first introduce a measure of hardness of learning under ambiguous
supervision, which we define as ambiguity degree ǫ of a distribution P (X,Y,Z):

Ambiguity degree: ǫ = sup
x,y,z:P (x,y)>0,z∈{1,...,L}

P (z ∈ Z | X = x, Y = y). (1)

In words, ǫ corresponds to the maximum probability of an extra label z co-occurring
with a true label y, over all labels and inputs. Let us consider several extreme cases: When
ǫ = 0, Z = ∅ with probability one, and we are back to the standard supervised learning
case, with no ambiguity. When ǫ = 1, some extra label always co-occurs with a true label
y on an example x and we cannot tell them apart: no learning is possible for this example.
For a fixed ambiguity set size C (i.e., P (|Z| = C) = 1), the smallest possible ambiguity
degree is ǫ = C/(L − 1), achieved for the case where P (Z | X,Y ) is uniform over subsets
of size C, for which we have P (z ∈ Z | X,Y ) = C/(L − 1) for all z ∈ {1, . . . , L}\{y}.
Intuitively, the best case scenario for ambiguous learning corresponds to a distribution with
high conditional entropy for P (Z | X,Y ).

The following proposition shows we can bound the (unobserved) 0/1 loss by the (ob-
served) partial loss, allowing us to approximately minimize the standard loss with access
only to the partial one. The tightness of the approximation directly relates to the ambiguity
degree.

Proposition 1 (Partial loss bound via ambiguity degree ǫ) For any classifier h and
distribution P (X,Y,Z), with Y = X ∪ Z and ambiguity degree ǫ:

EP [LA(h(X),Y)] ≤ EP [L(h(X), Y )] ≤ 1

1 − ǫ
EP [LA(h(X),Y)],

with the convention 1/0 = +∞. These bounds are tight, and for the second one, for any
(rational) ǫ, we can find a number of labels L, a distribution P and classifier h such that
equality holds.

Proof. All proofs appear in Appendix B.

3.2 Robustness to Outliers

One potential issue with Proposition 1 is that unlikely (outlier) pairs x, y (with vanishing
P (x, y)) might force ǫ to be close to 1, making the bound very loose. We show we can refine
the notion of ambiguity degree ǫ by excluding such pairs.

Definition 2 (ǫ, δ)-ambiguous distribution. A distribution P (X,Y,Z) is (ǫ, δ)-ambiguous
if there exists a subset G of the support of P (X,Y ), G ⊆ X × {1, . . . , L} with probability
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Figure 4: Feasible region for expected ambiguous and true loss, for ǫ = 0.2, δ = 0.05.

mass at least 1−δ, that is,
∫

(x,y)∈G P (X = x, Y = y)dµ(x, y) ≥ 1−δ, integrated with respect

to the appropriate underlying measure µ on X × {1, . . . , L}, for which

sup
(x,y)∈G,z∈{1,...,L}

P (z ∈ Z | X = x, Y = y) ≤ ǫ.

Note that in the extreme case ǫ = 0 corresponds to standard semi-supervised learning,
where 1−δ-proportion of examples are unambiguously labeled, and δ are (potentially) fully
unlabeled. Even though we can accommodate it, semi-supervised learning is not our focus
in this paper and our bounds are not well suited for this case.

This definition allows us to bound the 0/1 loss even in the case when some unlikely set
of pairs x, y with probability ≤ δ would make the ambiguity degree large. Suppose we mix
an initial distribution with small ambiguity degree, with an outlier distribution with large
overall ambiguity degree. The following proposition shows that the bound degrades only
by an additive amount, which can be interpreted as a form of robustness to outliers.

Proposition 3 (Partial loss bound via (ǫ, δ) ) For any classifier h and (ǫ, δ)-ambiguous
P (Z | X,Y ),

EP [L(h(X), Y )] ≤ 1

1 − ǫ
EP [LA(h(X),Y)] + δ.

A visualization of the bounds in Proposition 1 and Proposition 3 is shown in Figure 4.

3.3 Label-specific Recall Bounds

In the types of data from video experiments, we observe that certain subsets of labels are
harder to disambiguate than others. We can further tighten our bounds between ambiguous
loss and standard 0/1 loss if we consider label-specific information. We define the label-
specific ambiguity degree ǫa of a distribution (with a ∈ {1, . . . , L}) as:

ǫa = sup
x,z:P (X=x,Y=a)>0;z∈{1,...,L}

P (z ∈ Z | X = x, Y = a).

We can show a label-specific analog of Proposition 1:
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Proposition 4 (Label-specific partial loss bound) For any classifier h and distribu-
tion P (X,Y,Z) with label-specific ambiguity degree ǫa ,

EP [L(h(X), Y ) | Y = a] ≤ 1

1 − ǫa
EP [LA(h(X),Y) | Y = a],

where we see that ǫa bounds per-class recall.
These bounds give a strong connection between ambiguous loss and real loss when ǫ

is small. This assumption allows us to approximately minimize the expected real loss by
minimizing (an upper bound on) the ambiguous loss, as we propose in the following section.

4. A Convex Learning Formulation

We have not assumed any specific form for our classifier h(x) above. We now focus on a
particular family of classifiers, which assigns a score ga(x) to each label a for a given input
x and select the highest scoring label:

h(x) = arg max
a∈1..L

ga(x).

We assume that ties are broken arbitrarily, for example, by selecting the label with smallest
index a. We define the vector g(x) = [g1(x) . . . gL(x)]⊤, with each component ga : X 7→ R

in a function class G. Below, we use a multi-linear function class G by assuming a feature
mapping f(x) : X 7→ R

d from inputs to d real-valued features and let ga(x) = wa · f(x),
where wa ∈ R

d is a weight vector for each class, bounded by some norm: ||wa||p ≤ B for
p = 1, 2.

We build our learning formulation on a simple and general multiclass scheme, frequently
used for the fully supervised setting (Crammer and Singer, 2002; Rifkin and Klautau, 2004;
Zhang, 2004; Tewari and Bartlett, 2005), that combines convex binary losses ψ(·) : R 7→ R+

on individual components of g to create a multiclass loss. For example, we can use hinge,
exponential or logistic loss. In particular, we assume a type of one-against-all scheme for
the supervised case:

Lψ(g(x), y) = ψ(gy(x)) +
∑

a 6=y

ψ(−ga(x)).

A classifier hg(x) is selected by minimizing the empirical loss Lψ on the sample S =
{xi, yi}mi=1 (called empirical ψ-risk) over the function class G:

inf
g∈G

ES [Lψ(g(X), Y )] = inf
g∈G

1

m

m∑

i=1

Lψ(g(xi), yi).

For the fully supervised case, under appropriate assumptions, this form of the multiclass
loss is infinite-sample consistent. This means that a minimizer ĝ of ψ-risk achieves optimal
0/1 risk infg ES [Lψ(g(X), Y )] = infg EP [L(g(X), Y )] as the number of samples m grows to
infinity, provided that the function class G grows appropriately fast with m to be able to
approximate any function from X to R and ψ(u) satisfies the following conditions: (1) ψ(u)
is convex, (2) bounded below, (3) differentiable and (4) ψ(u) < ψ(−u) when u > 0 (Theorem
9 in Zhang (2004)). These conditions are satisfied, for example, for the exponential, logistic
and squared hinge loss max(0, 1− u)2. Below, we construct a loss function for the partially
labeled case and consider when the proposed loss is consistent.
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4.1 Convex Loss for Partial Labels

In the partially labeled setting, instead of an unambiguous single label y per instance we
have a set of labels Y , one of which is the correct label for the instance. We propose the
following loss, which we call our Convex Loss for Partial Labels (CLPL):

Lψ(g(x),y) = ψ

(

1

|y|
∑

a∈y

ga(x)

)

+
∑

a/∈y

ψ(−ga(x)). (2)

Note that if y is a singleton, the CLPL function reduces to the regular multiclass loss.
Otherwise, CLPL will drive up the average of the scores of the labels in y. If the score of
the correct label is large enough, the other labels in the set do not need to be positive. This
tendency alone does not guarantee that the correct label has the highest score. However,
we show in Proposition 6 that Lψ(g(x),y) upperbounds LA(g(x),y) whenever ψ(·) is an
upper bound on the 0/1 loss.

Of course, minimizing an upperbound on the loss does not always lead to sensible
algorithms. We show next that our loss function is consistent under certain assumptions
and offers a tighter upperbound to the ambiguous loss compared to a more straightforward
multi-label approach.

4.2 Consistency for Partial Labels

We derive conditions under which the minimizer of the CLPL in Equation 2 with partial
labels achieves optimal 0/1 risk: infg∈G ES [Lψ(g(X),Y)] = infg∈G EP [L(g(X), Y )] in the
limit of infinite data and arbitrarily rich G. Not surprisingly, our loss function is not con-
sistent without making some additional assumptions on P (Y | X) beyond the assumptions
for the fully supervised case. Note that the Bayes optimal classifier for 0/1 loss satisfies
the condition h(x) ∈ arg maxa P (Y = a | X = x), and may not be unique. First, we
require that arg maxa P (Y = a | X = x) = arg maxa P (a ∈ Y | X = x), since otherwise
arg maxa P (Y = a | X = x) cannot be determined by any algorithm from partial labels Y
without additional information even with an infinite amount of data. Second, we require
a simple dominance condition as detailed below and provide a counterexample when this
condition does not hold. The dominance relation defined formally below states that when
a is the most (or one of the most) likely label given x according to P (Y | X = x) and b is
not, c ∪ {a} has higher (or equal) probability than c ∪ {b} for any set of other labels c.

Proposition 5 (Partial label consistency) Suppose the following conditions hold:

• ψ(·) is differentiable, convex, lower-bounded and non-increasing, with ψ′(0) < 0.

• When P (X = x) > 0, arg maxa′ P (Y = a′ | X = x) = arg maxa′ P (a′ ∈ Y | X = x).

• The following dominance relation holds: ∀a ∈ arg maxa′ P (a′ ∈ Y | X = x), ∀b 6∈
arg maxa′
P (a′ ∈ Y | X = x), ∀c ⊂ {1, . . . , L}\{a, b}:

P (Y = c ∪ {a} | X = x) ≥ P (Y = c ∪ {b} | X = x).
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Then Lψ(g(x),y) is infinite-sample consistent:

inf
g∈G

ES [Lψ(g(X),Y)] = inf
g∈G

EP [L(g(X), Y )],

as |S| = m → ∞ and G → R
L . As a corollary, consistency is implied when ambiguity

degree ǫ < 1 and P (Y | X) is deterministic, that is, P (Y | X) = 1(Y = h(X)) for some
h(·).

If the dominance relation does not hold, we can find counter-examples where consistency
fails. Consider a distribution with a single x with P (x) > 0, and let L = 4, P (|Y| = 2 |
X = x) = 1, ψ be the square-hinge loss, and P (Y | X = x) be such that:

a
250 · Pab 1 2 3 4

b

1 0 29 44 0
2 29 0 17 26
3 44 17 0 9
4 0 26 9 0

250 · Pa 73 72 70 35

Above, the abbreviations are Pab = P (Y = {a, b} | X = x) and Pa =
∑

b Pab, and the entries
that do not satisfy the dominance relation are in bold. We can explicitly compute the mini-
mizer of Lψ, which is g = (12Pab+diag(2−3

2Pa))
−1(3Pa−2) ≈ −

[
0.6572 0.6571 0.6736 0.8568

]
.

It satisifes arg maxa ga = 2 but arg maxa
∑

b Pab = 1.

4.3 Comparison to Other Loss Functions

The “naive” partial loss, proposed by Jin and Ghahramani (2002), treats each example as
having multiple correct labels, which implies the following loss function

Lnaiveψ (g(x),y) =
1

|y|
∑

a∈y

ψ (ga(x)) +
∑

a/∈y

ψ(−ga(x)). (3)

One reason we expect our loss function to outperform the naive approach is that we obtain
a tighter convex upper bound on LA. Let us also define

Lmaxψ (g(x),y) = ψ

(

max
a∈y

ga(x)

)

+
∑

a/∈y

ψ(−ga(x)), (4)

which is not convex, but is in some sense closer to the desired true loss. The following
inequalities are verified for common losses ψ such as square hinge loss, exponential loss, and
log loss with proper scaling:

Proposition 6 (Comparison between partial losses) Under the usual conditions that
ψ is a convex, decreasing upper bound of the step function, the following inequalities hold:

2LA ≤ Lmaxψ ≤ Lψ ≤ Lnaiveψ .

The 2nd and 3rd bounds are tight, and the first one is tight provided ψ(0) = 1 and lim+∞ ψ =
0.
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Figure 5: Our loss function in Equation 2 provides a tighter convex upperbound than the
naive loss Equation 3 on the non-convex max-loss Equation 4. (Left) We show
the square hinge ψ (blue) and a chord (red) touching two points g1, g2. The
horizontal lines correspond to our loss ψ(12(g1 + g2)) Equation 2, the max-loss
ψ(max(g1, g2)), and the naive loss 1

2(ψ(g1) +ψ(g2)) (ignoring negative terms and
assuming y = {1, 2}). (Middle) Corresponding losses as we vary g1 ∈ [−2, 2]
(with g2 = 0). (Right) Same, with g2 = −g1.

This shows that our CLPL Lψ is a tighter approximation to LA than Lnaiveψ , as illus-
trated in Figure 5. To gain additional intuition as to why CLPL is better than the naive
loss Equation 3: for an input x with ambiguous label set (a, b), CLPL only encourages the
average of ga(x) and gb(x) to be large, allowing the correct score to be positive and the
extraneous score to be negative (e.g., ga(x) = 2, gb(x) = −1). In contrast, the naive model
encourages both ga(x) and gb(x) to be large.

4.4 Generalization Bounds

To derive concrete generalization bounds on multiclass error for CLPL we define our function
class for g. We assume a feature mapping f(x) : X 7→ R

d from inputs to d real-valued
features and let ga(x) = wa · f(x), where wa ∈ R

d is a weight vector for each class, bounded
by L2 norm : ||wa||2 ≤ B. We use ψ(u) = max(0, 1 − u)p (for example hinge loss with
p = 1, squared hinge loss with p = 2). The corresponding margin-based loss is defined via
a truncated, rescaled version of ψ:

ψγ(u) =







1 if u ≤ 0,

(1 − u/γ)p if 0 < u ≤ γ,

0 if u > γ.

Proposition 7 (Generalization bound) For any integer m and any η ∈ (0, 1), with
probability at least 1 − η over samples S = {(xi,yi)}mi=1, for every g in G:

EP [LA(g(X),Y)] ≤ ES [Lψγ
(g(X),Y)] +

4pBL5/2

cγ

√

ES [||f(X)||2]
m

+ L

√

8 log(2/η)

m
.
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where c is an absolute constant from Lemma 12 in the appendix, ES is the sample average
and L is the number of labels.

The proof in the appendix uses definition 11 for Rademacher and Gaussian complex-
ity, Lemma 12, Theorem 13 and Theorem 14 from Bartlett and Mendelson (2002), repro-
duced in the appendix and adapted to our notations for completeness. Using Proposition
7 and Proposition 1, we can derive the following bounds on the true expected 0/1 loss
EP [L(g(X), Y )] from purely ambiguous data:

Proposition 8 (Generalization bounds on true loss) For any distribution ǫ-ambiguous
distribution P , integer m and η ∈ (0, 1), with probability at least 1 − η over samples
S = {(xi,yi)}mi=1, for every g ∈ G:

EP [L(g(X), Y )] ≤ 1

1 − ǫ



ES [Lψγ
(g(X),Y)] +

4pBL5/2

cγ

√

ES [||f(X)||2]
m

+ L

√

8 log 2
η

m



 .

5. Transductive Analysis

We now turn to the analysis of our Convex Loss for Partial Labels (CLPL) in the trans-
ductive setting. We show guarantees on disambiguating the labels of instances under fairly
reasonable assumptions.

Example 1 Consider a data set S of two points, x, x′, with label sets {1, 2}, {1, 3}, re-
spectively and suppose that the total number of labels is 3. The objective function is given
by:

ψ(
1

2
(g1(x) + g2(x))) + ψ(−g3(x)) + ψ(

1

2
(g1(x

′) + g3(x
′))) + ψ(−g2(x′)).

Suppose the correct labels are (1, 1). It is clear that without further assumptions about
x and x′ we cannot assume that the minimizer of the loss above will predict the right label.
However, if f(x) and f(x′) are close, it should be intuitively clear that we should be able to
deduce the label of the two examples is 1.

A natural question is under what conditions on the data will CLPL produce a labeling
that is consistent with groundtruth. We provide an analysis under several assumptions.

5.1 Definitions

In the remainder of this section, we denote y(x) (resp. y(x)) as the true label (resp.
ambiguous label set) of some x ∈ S, and z(x) = y(x)\{y(x)}. || · || denotes an arbitrary
norm, with || · ||∗ its dual norm. As above, ψ denotes a decreasing upper bound on the step
function and g a classifier satisfying: ∀a, ||wa||∗ ≤ 1 (we can easily generalize the remaining
propositions to the case where ga is 1-Lipschitz and f is the identity). For x ∈ S and η > 0,
we define Bη(x) as the set of neighbors of x that have the same label as x:

Bη(x) = {x′ ∈ S\{x} : ||f(x′) − f(x)|| < η, y(x′) = y(x)}.
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Lemma 9 Let x ∈ S. If Lψ(g(x),y(x)) ≤ ψ(η/2) and ∀a ∈ z(x), ∃x′ ∈ Bη(x) such that
ga(x

′) ≤ −η/2, then g predicts the correct label for x.

In other words, g predicts the correct label for x when its loss is sufficiently small, and for
each of its ambiguous labels a, we can find a neighbor with same label whose score ga(x

′) is
small enough. Note that this does not make any assumption on the nearest neighbors of x.

Corollary 10 Let x ∈ S. Suppose ∃q ≥ 0, x1...xq ∈ Bη(x) such that ∩i=0..qz(xi) = ∅,
maxi=0..q Lψ(g(xi),y(xi)) ≤ ψ(η/2) (with x0 := x). Then g predicts the correct label for x.

In other words, g predicts the correct label for x if we can find a set of neighbors of the same
label with small enough loss, and without any common extra label. This simple condition
often arises in our experiments.

6. Algorithms

Our formulation is quite flexible and we can derive many alternative algorithms depending
on the choice of the binary loss ψ(u), the regularization, and the optimization method.
We can minimize Equation 2 using off-the-shelf binary classification solvers. To do this,
we rewrite the two types of terms in Equation 2 as linear combinations of m · L feature
vectors. We stack the parameters and features into one vector as follows below, so that
ga(x) = wa · f(x) = w · f(x, a):

w =





w1

. . .
wL



 ; f(x, a) =





1(a = 1)f(x)
. . .

1(a = L)f(x)



 .

We also define f(x,y) to be the average feature vector of the labels in the set y:

f(x,y) =
1

|y|
∑

a∈y

f(x, a).

With these definitions, we have:

Lψ(g(x),y) = ψ(w · f(x,y)) +
∑

a/∈y

ψ(−w · f(x, a)).

Then to use a binary classification method to solve CLPL optimization, we simply transform
the m partially labelled training examples S = {xi,yi}mi=1 into m positive examples S+ =
{f(xi,yi)}mi=1 and

∑

i L − |yi| negative examples S− = {f(xi, a)}mi=1,a/∈yi
. Note that the

increase in dimension of the features by a factor of L does not significantly affect the running
time of most methods since the vectors are sparse. We use the off-the-shelf implementation
of binary SVM with squared hinge (Fan et al., 2008) in most of our experiments, where the
objective is:

min
w

1

2
||w||22 + C

∑

i

max(0, 1 −w · f(xi,yi))2 + C
∑

i,a/∈yi

max(0, 1 + w · f(xi, a))2.
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Using hinge loss and L1 regularization lead to a linear programming formulation, and
using L1 with exponential loss leads naturally to a boosting algorithm. We present (and
experiment with) a boosting variant of the algorithm, allowing efficient feature selection, as
described in Appendix A. We can also consider the case where the regularization is L2 and
f(x) : X 7→ R

d is a nonlinear mapping to a high, possibly infinite dimensional space using
kernels. In that case, it is simple to show that

w =
∑

i

αif(xi,yi) −
∑

i,a/∈yi

αi,af(xi, a),

for some set of non-negative α’s, where αi corresponds to the positive example f(xi,yi), and
αi,a corresponds to the negative example f(xi, a), for a /∈ yi. Letting K(x, x′) = f(x) · f(x′)
be the kernel function, note that f(x, a) · f(x′, b) = 1(a = b)K(x, x′). Hence, we have:

w · f(x, b) =
∑

i,a∈yi

αi
|yi|

1(a = b)K(xi, x) −
∑

i,a/∈yi

αi,a1(a = b)K(xi, x).

This transformation allows us to use kernels with standard off-the-shelf binary SVM imple-
mentations.

7. Controlled Partial Labeling Experiments

We first perform a series of controlled experiments to analyze our Convex Learning from
Partial Labels (CLPL) framework on several data sets, including standard benchmarks
from the UCI repository (Asuncion and Newman, 2007), a speaker identification task
from audio extracted from movies, and a face naming task from Labeled Faces in the
Wild (Huang et al., 2007b). In Section 8 we also consider the challenging task of naming
characters in TV shows throughout an entire season. In each case the goal is to correctly
label faces/speech segments/instances from examples that have multiple potential labels
(transductive case), as well as learn a model that can generalize to other unlabeled examples
(inductive case).

We analyze the effect on learning of the following factors: distribution of ambiguous
labels, size of ambiguous bags, proportion of instances which contain an ambiguous bag,
entropy of the ambiguity, distribution of true labels and number of distinct labels. We
compare our CLPL approach against a number of baselines, including a generative model,
a discriminative maximum-entropy model, a naive model, two K-nearest neighbor models,
as well as models that ignore the ambiguous bags. We also propose and compare several
variations on our cost function. We conclude with a comparative summary, analyzing our
approach and the baselines according to several criteria: accuracy, applicability, space/time
complexity and running time.

7.1 Baselines

In the experiments, we compare CLPL with the following baselines.

1240



Learning from Partial Labels

7.1.1 Chance Baseline

We define the chance baseline as randomly guessing between the possible ambiguous labels
only. Defining the (empirical) average ambiguous size to be ES [|y|] = 1

m

∑m
i=1 |yi|, then the

expected error from the chance baseline is given by errorchance = 1 − 1
ES [|y|]

.

7.1.2 Naive Model

We report results on an un-normalized version of the naive model introduced in Equation 3:
∑

a∈y ψ (ga(x))+
∑

a/∈y ψ(−ga(x)), but both normalized and un-normalized versions produce
very similar results. After training, we predict the label with the highest score (in the
transductive setting): ŷ = arg maxa∈y ga(x).

7.1.3 IBM Model 1

This generative model was originally proposed in Brown et al. (1993) for machine transla-
tion, but we can adapt it to the ambiguous label case. In our setting, the conditional proba-
bility of observing example x ∈ R

d given that its label is a is Gaussian: x ∼ N(µa,Σa). We
use the expectation-maximization (EM) algorithm to learn the parameters of the Gaussians
(mean µa and diagonal covariance matrix Σa = diag(σa) for each label).

7.1.4 Discriminative EM

We compare with the model proposed in Jin and Ghahramani (2002), which is a discrimi-
native model with an EM procedure adapted for the ambiguous label setting. The authors
minimize the KL divergence between a maximum entropy model P (estimated in the M-
step) and a distribution over ambiguous labels P̂ (estimated in the E-step):

J(θ, P̂ ) =
∑

i

∑

a∈y

P̂ (a | xi) log

(

P̂ (a | xi)
P (a | xi, θ)

)

.

7.1.5 k-Nearest Neighbor

Following Hullermeier and Beringer (2006), we adapt the k-Nearest Neighbor Classifier to
the ambiguous label setting as follows:

knn(x) = arg max
a∈y

k∑

i=1

wi1(a ∈ yi), (5)

where xi is the ith nearest-neighbor of x using Euclidean distance, and wi are a set of
weights. We use two kNN baselines: kNN assumes uniform weights wi = 1 (model used
in Hullermeier and Beringer, 2006), and weighted kNN uses linearly decreasing weights
wi = k − i + 1. We use k = 5 and break ties randomly as in Hullermeier and Beringer
(2006).
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7.1.6 Supervised Models

Finally we also consider two baselines that ignore the ambiguous label setting. The first one,
denoted as supervised model, removes from Equation 3 the examples with |y| > 1. The
second model, denoted as supervised kNN, removes from Equation 5 the same examples.

7.2 Data Sets and Feature Description

We describe below the different data sets used to report our experiments. The experiments
for automatic naming of characters in TV shows can be found in Section 8. A concise
summary is given in Table 2.

Data Set # instances (m) # features (d) # labels (L) prediction task

UCI: dermatology 366 34 6 disease diagnostic

UCI: ecoli 336 8 8 site prediction

UCI: abalone 4177 8 29 age determination

FIW(10b) 500 50 10 (balanced) face recognition

FIW(10) 1456 50 10 face recognition

FIW(100) 3011 50 100 face recognition

Lost audio 522 50 19 speaker id

TV+movies 10,000 50 100 face recognition

Table 2: Summary of data sets used in our experiments. The TV+movies experiments are
treated in Section 8. Faces in the Wild (1) uses a balanced distribution of labels
(first 50 images for the top 10 most frequent people).

7.2.1 UCI Data Sets

We selected three biology related data sets from the publicly available UCI repository
(Asuncion and Newman, 2007): dermatology, ecoli, abalone. As a preprocessing step, each
feature was independently scaled to have zero mean and unit variance.

7.2.2 Faces in the Wild (FIW)

We experiment with different subsets of the publicly available Labeled Faces in the Wild
(Huang et al., 2007a) data set. We use the images registered with funneling (Huang et al.,
2007a), and crop out the central part corresponding to the approximate face location, which
we resize to 60x90. We project the resulting grayscale patches (treated as 5400x1 vectors)
onto a 50-dimensional subspace using PCA.2 In Table 2, FIW(10b) extracts the first 50
images for each of the top 10 most frequent people (balanced label distribution); FIW(10)
extracts all images for each of the top 10 most frequent people (heavily unbalanced label dis-
tribution, with 530 hits for George Bush and 53 hits for John Ashcroft); FIW(100) extracts

2. We kept the features simple by design; more sophisticated part-based registration and representation
would further improve results, as we will see in Section 8.

1242



Learning from Partial Labels

up to 100 faces for each of the top 100 most frequent people (again, heavily unbalanced
label distribution).

7.2.3 Speaker Identification From Audio

We also investigate a speaker identification task based on audio in an uncontrolled environ-
ment. The audio is extracted from an episode of Lost (season 1, episode 5) and is initially
completely unaligned. Compared to recorded conversation in a controlled environment, this
task is more realistic and very challenging due to a number of factors: background noise,
strong variability in tone of voice due to emotions, and people shouting or talking at the same
time. We use the Hidden Markov Model Toolkit (HTK) (http://htk.eng.cam.ac.uk/)
to compute forced alignment (Moreno et al., 1998; Sjölander, 2003), between the closed
captions and the audio (given the rough initial estimates from closed caption time stamps,
which are often overlapping and contain background noise). After alignment, our data set is
composed of 522 utterances (each one corresponding to a closed caption line, with aligned
audio and speaker id obtained from aligned screenplay), with 19 different speakers. For
each speech segment (typically between 1 and 4 seconds) we extract standard voice pro-
cessing audio features: pitch (Talkin, 1995), Mel-Frequency Cepstral Coefficients (MFCC)
(Mermelstein, 1976), Linear predictive coding (LPC) (Proakis and Manolakis, 1996). This
results in a total of 4,000 features, which we normalize to the range [−1, 1] and then project
onto 50 dimensions using PCA.

7.3 Experimental Setup

For the inductive experiments, we split randomly in half the instances into (1) ambigu-
ously labeled training set, and (2) unlabeled testing set. The ambiguous labels in the
training set are generated randomly according to different noise models which we specify
in each case. For each method and parameter setting, we report the average test error
rate over 20 trials after training the model on the ambiguous train set. We also report
the corresponding standard deviation as an error bar in the plots. Note, in the inductive
setting we consider the test set as unlabeled, thus the classifier votes among all possible
labels:

a∗ = h(x) = arg max
a∈{1..L}

ga(x).

For the transductive experiments, there is no test set; we report the error rate for
disambiguating the ambiguous labels (also averaged over 20 trials corresponding to random
settings of ambiguous labels). The main differences with the inductive setting are: (1) the
model is trained on all instances and tested on the same instances; and (2) the classifier
votes only among the ambiguous labels, which is easier:

a∗ = h(x) = arg max
a∈y

ga(x).

We compare our CLPL approach (denoted as mean in figures, due to the form of the
loss) against the baselines presented in Section 7.1: Chance, Model 1, Discriminative
EM model, k-Nearest Neighbor, weighted k-Nearest Neighbor, Naive model, supervised
model, and supervised kNN. Note, in our experiments the Discriminative EM model was
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much slower to converge than all the other methods, and we only report the first series of
experiments with this baseline.

Table 3 summarizes the different settings used in each experiment. We experiment with
different noise models for ambiguous bags, parametrized by p, q, ǫ, see Figure 6. p represents
the proportion of examples that are ambiguously labeled. q represents the number of extra
labels for each ambiguous example. ǫ represents the degree of ambiguity (defined in 1) for
each ambiguous example.3 We also vary the dimensionality by increasing the number of
PCA components from 1 to 200, with half of extra labels added uniformly at random. In
Figure 7, we vary the ambiguity size q for three different subsets of Faces in the Wild. We
report results on additional data sets in Figure 8.

Experiment fig induct. data set parameter

# of ambiguous bags 6 yes FIW(10b) p ∈ [0, 0.95], q = 2

degree of ambiguity 6 yes FIW(10b) p = 1, q = 1, ǫ ∈ [1/(L− 1), 1]

degree of ambiguity 6 no FIW(10b) p = 1, q = 1, ǫ ∈ [1/(L− 1), 1]

dimension 6 yes FIW(10b) p = 1, q = L−1
2 , d ∈ [1, .., 200]

ambiguity size 7 yes FIW(10b) p = 1, q ∈ [0, 0.9(L− 1)]

ambiguity size 7 yes FIW(10) p = 1, q ∈ [0, 0.9(L− 1)]

ambiguity size 7 yes FIW(100) p = 1, q ∈ [0, 0.9(L− 1)]

ambiguity size 8 yes Lost audio p = 1, q ∈ [0, 0.9(L− 1)]

ambiguity size 8 yes ecoli p = 1, q ∈ [0, 0.9(L− 1)]

ambiguity size 8 yes derma p = 1, q ∈ [0, 0.9(L− 1)]

ambiguity size 8 yes abalone p = 1, q ∈ [0, 0.9(L− 1)]

Table 3: Summary of controlled experiments. We experiment with 3 different noise models
for ambiguous bags, parametrized by p, q, ǫ. p represents the proportion of ex-
amples that are ambiguously labeled. q represents the number of extra labels for
each ambiguous example (generated uniformly without replacement). ǫ represents
the degree of ambiguity for each ambiguous example (see definition 1). L is the
total number of labels. We also study the effects of data set choice, inductive vs
transductive learning, and feature dimensionality.

7.3.1 Experiments with a Boosting Version of CLPL

We also experiment with a boosting version of our CLPL optimization, as presented in
Appendix A. Results are shown in Figure 9, comparing our method with kNN and the
naive method (also using boosting). Despite the change in learning algorithm and loss
function, the trends remain the same.

3. We first choose at random for each label a dominant co-occurring label which is sampled with probability
ǫ; the rest of the labels are sampled uniformly with probability (1 − ǫ)/(L − 2) (there is a single extra
label per example).
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Figure 6: Results on Faces in the Wild in different settings, comparing our proposed CLPL
(denoted as mean) to several baselines. In each case, we report the average
error rate (y-axis) and standard deviation over 20 trials as in Figure 7. (top
left) increasing proportion of ambiguous bags q, inductive setting. (top right)
increasing ambiguity degree ǫ (Equation 1), inductive setting. (bottom left) in-
creasing ambiguity degree ǫ (Equation 1), transductive setting. (bottom right)
increasing dimensionality, inductive setting.

7.4 Comparative Summary

We can draw several conclusions. Our proposed CLPL model uniformly outperformed
all baselines in all but one experiment (UCI dermatology data set), where it ranked sec-
ond closely behind Model 1. In particular CLPL always uniformly outperformed the naive
model. The naive model ranks in second. As expected, increasing ambiguity size monoton-
ically affects error rate. We also see that increasing ǫ significantly affects error, even though
the ambiguity size is constant, consistent with our bounds in Section 3.3. We also note
that the supervised models defined in Section 7.1.6 (which ignore the ambiguously labeled
examples) consistently perform worse than their counterparts adapted for the ambiguous
setting. For example, in Figure 6 (Top Left), a model trained with nearly all examples
ambiguously labeled (“mean” curve”, p = 95%) performs as good as a model which uses
60% of fully labeled examples (“supervised” curve, p = 40%). The same holds between the
“kNN” curve at p = 95% and the “supervised kNN” curve at p = 40%.
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Figure 7: Additional results on Faces in the Wild, obtained by varying the ambiguity size
q on the x-axis (inductive case). Left: balanced data set using 50 faces for each
of the top 10 labels. Middle: unbalanced data set using all faces for each of the
top 10 labels. Right: unbalanced data set using up to 100 faces for each of the
top 100 labels.
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Figure 8: Inductive results on different data sets. In each case, we report the average
error rate (y-axis) and standard deviation over 20 trials as in Figure 7. Top
Left: speaker identification from Lost audio. Top Right: ecoli data set (UCI).
Bottom Left: dermatology data set (UCI). Bottom Right: abalone data set
(UCI).
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Figure 9: Left: We experiment with a boosting version of the ambiguous learning, and
compare to a boosting version of the naive baseline (here with ambiguous bags of
size 3). We plot accuracy vs number of boosting rounds. The green horizontal line
corresponds to the best performance (across k) of the k-NN baseline. Middle:
accuracy of k-NN baseline across k. Right: we compare CLPL (labeled mean)
with two variants defined in Equation 6,Equation 7, along with the naive model
(same setting as Figure 6, Top Left).

7.4.1 Comparison with Variants of Our Approach

In order to get some intuition on CLPL (Equation 2), which we refer to as the mean model
in our experiments, we also compare with the following sum and contrastive alternatives:

Lsum
ψ (g(x),y) = ψ

(
∑

a∈y

ga(x)

)

+
∑

a/∈y

ψ(−ga(x)), (6)

Lcontrastive
ψ (g(x),y) =

∑

a′ /∈y

ψ

(

1

|y|
∑

a∈y

ga(x) − ga′(x)

)

. (7)

When ψ(·) is the hinge loss, the mean and sum model are very similar, but this is not the
case for strictly convex binary losses. Figure 9 shows that variations on our cost function
have little effect in the transductive setting. In the inductive setting, other experiments we
performed show that the mean and sum version are still very similar, but the contrastive
version is worse. In general it seems that models based on minimization of a convex loss
function (naive and different versions of our model) usually outperform the other models.

8. Experiments with Partially Labeled Faces in Videos

We now return to our introductory motivating example, naming people in TV shows (Fig-
ure 1, right). Our goal is to identify characters given ambiguous labels derived from the
screenplay. Our data consists of 100 hours of Lost and C.S.I., from which we extract am-
biguously labeled faces to learn models of common characters. We use the same features,
learning algorithm and loss function as in Section 7.2.2. We also explore using additional
person- and movie-specific constraints to improve performance. Sample results are shown
in Figure 10.
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Figure 10: Predictions on Lost and C.S.I.. Incorrect examples are: row 1, column 3 (truth:
Boone); row 2, column 2 (truth: Jack).

8.1 Data Collection

We adopt the following filtering pipeline to extract face tracks, inspired by Everingham et al.
(2006): (1) Run the off-the-shelf OpenCV face detector over all frames, searching over
rotations and scales. (2) Run face part detectors4 over the face candidates. (3) Perform a
2D rigid transform of the parts to a template. (4) Compute the score of a candidate face
s(x) as the sum of part detector scores plus rigid fit error, normalizing each to weight them
equally, and filtering out faces with low score. (5) Assign faces to tracks by associating
face detections within a shot using normalized cross-correlation in RGB space, and using
dynamic programming to group them together into tracks. (6) Subsample face tracks to
avoid repetitive examples. In the experiments reported here we use the best scoring face in
each track, according to s(x).

Concretely, for a particular episode, step (1) finds approximately 100,000 faces, step (4)
keeps approximately 10,000 of those, and after subsampling tracks in step (6) we are left
with 1000 face examples.

8.2 Ambiguous Label Selection

Screenplays for popular TV series and movies are readily available for free on the web.
Given an alignment of the screenplay to frames, we have ambiguous labels for characters
in each scene: the set of speakers mentioned at some point in the scene, as shown in
Figure 1. Alignment of screenplay to video uses methods presented in Cour et al. (2008)
and Everingham et al. (2006), linking closed captions to screenplay.

We use the ambiguous sets to select face tracks filtered through our pipeline. We prune
scenes which contain characters other than the set we choose to focus on for experiments
(top {8,16,32} characters), or contain 4 or more characters. This leaves ambiguous bags of
size 1, 2 or 3, with an average bag size of 2.13 for Lost, and 2.17 for C.S.I..

4. The detectors use boosted cascade classifiers of Haar features for the eyes, nose and mouth.
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Lost (#labels, #episodes) (8,16) (16,8)† (16,16) (32,16)

Naive 14% 18.6% 16.5% 18.5%
ours (CLPL / “mean”) 10% 12.6% 14% 17%

ours+constraints 6% n/a 11% 13%

Table 4: Misclassification rates of different methods on TV show Lost. In com-
parison, for (16,16) the baseline performances are knn: 30%; Model 1 :
44%; chance: 53%. †: This column contains results exactly reproducible
from our publicly available reference implementation, which can be found at
http://vision.grasp.upenn.edu/video. For simplicity, this public code does
not include a version with extra constraints.

8.3 Errors in Ambiguous Label Sets

In the TV episodes we considered, we observed that approximately 1% of ambiguous label
sets were wrong, in that they didn’t contain the ground truth label of the face track. This
came from several reasons: presence of a non-english speaking character (Jin Kwon in
Lost, who speaks Korean) whose dialogue is not transcribed in the closed captions; sudden
occurence of an unknown, uncredited character on screen, and finally alignment problems
due to large discrepencies between screenplay and closed captions. While this is not a
major problem, it becomes so when we consider additional cues (mouth motion, gender)
that restrict the ambiguous label set. We will see how we tackle this issue with a robust
confidence measure for obtaining good precision recall curves in Section 8.5.

8.4 Results with the Basic System

Now that we have a set of instances (face tracks), feature descriptors for the face track and
ambiguous label sets for each face track, we can apply the same method as described in the
previous section. We use a transductive setting: we test our method on our ambiguously
labeled training set.

The confusion matrix displaying the distribution of ambiguous labels for the top 16
characters in Lost is shown in Figure 11 (left). The confusion matrix of our predictions
after applying our ambiguous learning algorithm is shown in Figure 11 (right). Our method
had the most trouble disambiguating Ethan Rom from Claire Littleton (Ethan Rom only
appears in 0.7% of the ambiguous bags, 3 times less then the second least common character)
and Liam Pace from Charlie Pace (they are brothers and co-occur frequently, as can be seen
in the top figure). The case of Sun Kwon and Jin Kwon is a bit special, as Jin does not speak
English in the series and is almost never mentioned in the closed-captions, which creates
alignment errors between screenplay and closed captions. These difficulties illustrate some of
the interesting challenges in ambiguously labeled data sets. As we can see, the most difficult
classes are the ones with which another class is strongly correlated in the ambiguous label
confusion matrix. This is consistent with the theoretical bounds we obtained in Section 3.3,
which establish a relation between the class specific error rate and class specific degree of
ambiguity ǫ.

Quantitative results are shown in Table 4. We measure error according to average 0-1
loss with respect to hand-labeled groundtruth labeled in 8 entire episodes of Lost. Our model
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Figure 11: Left: Label distribution of top 16 characters in Lost (using the standard matlab
color map). Element Dij represents the proportion of times class i was seen with
class j in the ambiguous bags, and D1 = 1. Right: Confusion matrix of pre-
dictions from Section 8.4. Element Aij represents the proportion of times class
i was classified as class j, and A1 = 1. Class priors for the most frequent, the
median frequency, and the least frequent characters in Lost are Jack Shephard,
14%; Hugo Reyes, 6%; Liam Pace 1%.

outperforms all the baselines, and we will further improve results. We now compare several
methods to obtain the best possible precision at a given recall, and propose a confidence
measure to this end.

8.5 Improved Confidence Measure for Precision-recall Evaluation

We obtain a precision-recall curve using a refusal to predict scheme, as used by Everingham et al.
(2006): we report the precision p for the r most confident predictions, varying r ∈ [0, 1].
We compare several confidence measures based on the classifier scores g(x) and propose
a novel one that significantly improves precision-recall, see Figure 12 for results.

1. the max and ratio confidence measures (as used in Everingham et al., 2006) are
defined as:

Cmax(g(x)) = max
a

ga(x),

Cratio(g(x)) = max
a

exp(ga(x))
∑

b exp(gb(x))
.

2. the relative score can be defined as the difference between the best and second best
scores over all classifiers (ga)a∈{1..L} (where a∗ = arg maxa∈{1..L} ga(x)):

Crel(g(x)) = ga∗(x) − max
a∈{1..L}−{a∗}

ga(x).
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Figure 12: Improved hybrid confidence measure for precision-recall evaluation. x axis:
recall; y axis: naming error rate for CLPL on 16 episodes of Lost (top 16 char-
acters). max confidence score performs rather poorly as it ignores other labels.
relative improves the high precision/low recall region by considering the margin
instead. The relative-constrain improves the high-recall/low-precision region
by only voting among the ambiguous bags, but it suffers in high-precision/low
recall region because some ambiguous bags may be erroneous. Our hybrid
confidence score gets the best of both worlds.

3. we can define the relative-constrained score as an adaptation to the ambiguous set-
ting; we only consider votes among ambiguous labels y (where a∗ = arg maxa∈y ga(x)):

Crel,y(g(x)) = ga∗(x) − max
a∈y−{a∗}

ga(x).

There are some problems with all of those choices, especially in the case where we have
some errors in ambiguous label set (a /∈ Y for the true label a). This can occur for example
if we restrict them with some heuristics to prune down the amount of ambiguity, such as
the ones we consider in Section 8.6 (mouth motion cue, gender, etc). At low recall, we
want maximum precision, therefore we cannot trust too much the heuristic used in relative-
constrained confidence. At high recall, the errors in the classifier dominate the errors in
ambiguous labels, and relative-constrained confidence gives better precision because of the
restriction. We introduce a hybrid confidence measure that performs well for all recall
levels r, interpolating between the two confidence measures:

har(x) =

{

ga(x) if a ∈ y,

(1 − r)ga(x) + rminb gb(x) else.

Cr(g(x)) = Crel(hr(x)).

By design, in the limit r → 0, Cr(g(x)) ≈ Crel(g(x)). In the limit r → 1, har(x) is small for
a /∈ y and so Cr(g(x)) ≈ Crel,y(g(x)).
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8.6 Additional Cues

We investigate additional features to further improve the performance of our system: mouth
motion, grouping constraints, gender. Final misclassification results are reported in Table
4.

8.6.1 Mouth Motion

We use a similar approach to Everingham et al. (2006) to detect mouth motion during
dialog and adapt it to our ambiguous label setting.5 For a face track x with ambiguous
label set y and a temporally overlapping utterance from a speaker a ∈ {1..L} (after aligning
screenplay and closed captions), we restrict y as follows:

y :=







{a} if mouth motion,

y if refuse to predict or y = {a},

y − {a} if absence of mouth motion.

8.6.2 Gender Constraints

We introduce a gender classifier to constrain the ambiguous labels based on predicted gen-
der. The gender classifier is trained on a data set of registered male and female faces, by
boosting a set of decision stumps computed on Haar wavelets. We use the average score
over a face track output by the gender classifier. We assume known the gender of names
mentioned in the screenplay (using automatically extracted cast list from IMDB). We use
gender by filtering out the labels that do not match by gender the predicted gender of a
face track, if the confidence exceeds a threshold (one for females and one for males are set
on a validation data to achieve 90% precision for each direction of the gender prediction).
Thus, we modify ambiguous label set y as:

y :=







y if gender uncertain,

y − {a : a is male} if gender predicts female,

y − {a : a is female} if gender predicts male.

8.6.3 Grouping Constraints

We propose a very simple must-not-link constraint, which states yi 6= yj if face tracks xi, xj
are in two consecutive shots (modeling alternation of shots, common in dialogs). This
constraint is active only when a scene has 2 characters. Unlike the previous constraints,
this constraint is incorporated as additional terms in our loss function, as in Yan. et al.
(2006). We also propose groundtruth grouping constraints for comparison: yi = yj for each
pair of face tracks xi, xj of the same label, and that are separated by at most one shot.

8.7 Ablative Analysis

Figure 13 is an ablative analysis, showing error rate vs recall curves for different sets of cues.
We see that the constraints provided by mouth motion help most, followed by gender and

5. Motion or absence of motion are detected with a low and high threshold on normalized cross-correlation
around mouth regions in consecutive frames.
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Figure 13: Ablative analysis. x-axis: recall; y-axis: error rate for character naming across 16
episodes of Lost, and the 8, 16, and 32 most common labels (respectively for the
left, middle, right plots). We compare our method, mean, to the Naive model
and show the effect of adding several cues to our system. Link: simple must-not-
link constraints from shot alternation, Gender: gender cue for simplification of
ambiguous bags; Mouth: mouth motion cue for detecting the speaker with syn-
chronous mouth motion; we also consider the combination Mouth+Gender, as
well as swapping in perfect components such as Groundtruth link constraints
and Groundtruth Mouth motion.

link constraints. The best setting (without using groundtruth) combines the former two
cues. Also, we notice, once again, a significant performance improvement of our method
over the naive method.

8.8 Qualitative Results and Video Demonstration

We show examples with predicted labels and corresponding accuracy, for various charac-
ters in C.S.I., see Figure 14. Those results were obtained with the basic system of Section
8.4. Full-frame detections for Lost and C.S.I. data sets can be seen in Figure 10. We also
propagate the predicted labels of our model to all faces in the same face track through-
out an episode. Video results of several episodes can be found at the following website
http://www.youtube.com/user/AmbiguousNaming.

9. Conclusion

We have presented an effective learning approach for partially labeled data, where each
instance is tagged with more than one label. Theoretically, under reasonable assumptions
on the data distribution, one can show that our algorithm will produce an accurate classifier.
We applied our method to two partially-supervised naming tasks: one on still images and
one on video from TV series. We also compared to several strong competing algorithms on
the same data sets and demonstrated that our algorithm achieves superior performance. We
attribute the success of the approach to better modeling of the mutual exclusion between
labels than the simple multi-label approach. Moreover, unlike recently published techniques
that address similar ambiguously labeled problems, our method does not rely on heuristics
and does not suffer from local optima of non-convex methods.
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Figure 14: Left: Examples classified as Catherine Willows in C.S.I. data set using our
method (zoom-in for details). Results are sorted by classifier score, in column
major format; this explains why most of the errors occur in the last columns.
The precision is 85.3%. Right: Examples classified as Sara Sidle in C.S.I.. The
precision is 78.3%.
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Appendix A. CLPL with Feature Selection Using Boosting

We derive Algorithm 1 by taking the second order Taylor expansion of the loss Lψ(g(x),y),
with ψ(u) = exp(−u). The updates of the algorithm are similar to a multiclass version of
Gentleboost (Friedman et al., 2000), but keep a combined weight vi for the positive example
f(xi,yi) and weights vi,a for the negative examples f(xi, a), a /∈ yi.

Appendix B. Proofs

Proof of Proposition 1 (Partial loss bound via ambiguity degree ǫ). The first
inequality comes from the fact that h(x) /∈ y =⇒ h(x) 6= y. For the second inequality,
fix an x ∈ X with P (X = x) > 0 and define EP [· | x] as the expectation with respect to

1254



Learning from Partial Labels

Algorithm 1 Boosting for CLPL with exponential loss

1: Initialize weights: vi = 1 ∀i, vi,a = 1 ∀i, a /∈ yi
2: for t = 1 . . . T do
3: for a = 1 . . . L do
4: Fit the parameters of each weak classifier u(x) to minimize the second-order

Taylor approximation of the cost function with respect to the ath classifier:

1

2

∑

i

[
vi · 1(a ∈ yi)(u(xi)/|yi| − 1)2 + vi,a · 1(a /∈ yi)(u(xi) + 1)2

]
+ constant.

5: end for
6: Choose the combination of u, a with lowest residual error.
7: Update ga(x) = ga(x) + u(x)
8: for i = 1 . . .m do
9: if a ∈ yi then

10: vi = vi · exp(−u(xi))
11: else
12: vi,a = vi,a · exp(u(xi))
13: end if
14: end for
15: Normalize v to sum to 1.
16: end for

P (Y | X = x).

EP [LA(h(x),Y)|x] = P (h(x) 6∈ Y | X = x) = P (h(x) 6= Y, h(x) 6∈ Z | X = x)

=
∑

a 6=h(x)

P (Y = a | X = x)(1 − P (h(x) ∈ Z | X = x, Y = a)
︸ ︷︷ ︸

≤ǫ by definition

)

≥
∑

a 6=h(x)

P (Y = a | X = x)(1 − ǫ) = (1 − ǫ)EP [L(h(x), Y )|x].

Hence, EP [L(h(x), Y )|x] ≤ 1
1−ǫEP [LA(h(x),Y)|x] for any x. We conclude by taking ex-

pectation over x.The first inequality is tight: equality can be achieved, for example, when
P (y|x) is deterministic, and a perfect classifier h such that for all x, h(x) = y. The second
inequality is also tight: for example consider the uniform case with a fixed ambiguity size
|z| = C and for all x, y, z 6= y, P (z ∈ z | X = x, Y = y) = C/(L − 1). In the proof above
(second inequality), the only inequality becomes an equality. In fact, this also shows that
for any (rational) ǫ, we can find a number of labels L, a distribution P and a classifer h
such that there is equality.
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Proof of Proposition 3 (Partial loss bound via (ǫ, δ)). We split up the expectation
in two parts:

EP [L(h(X), Y )] = EP [L(h(X), Y )|(X,Y ) ∈ G](1 − δ) + EP [L(h(X), Y )|(X,Y ) 6∈ G]δ

≤ EP [L(h(X), Y )|(X,Y ) ∈ G](1 − δ) + δ

≤ 1

1 − ǫ
EP [LA(h(X),Y)|(X,Y ) ∈ G](1 − δ) + δ.

We applied Proposition 1 in the last step. Using a symmetric argument,

EP [LA(h(X), Y )] = EP [LA(h(X),Y)|(X,Y ) ∈ G](1 − δ) + EP [LA(h(X),Y)|(X,Y ) 6∈ G]δ

≥ EP [LA(h(X),Y)|(X,Y ) ∈ G](1 − δ).

Finally we obtain EP [L(h(X), Y )] ≤ 1
1−ǫEP [LA(h(X),Y)] + δ.

Proof of Proposition 4 (Label-specific partial loss bound). Fix x ∈ X such that
P (X = x) > 0 and P (Y = a|x) > 0 and define EP [· | x, a] as the expectation w.r.t.
P (Z | X = x, Y = a). We consider two cases:

a) if h(x) = a, EP [LA(h(X),Y) | x, a] = P (h(x) 6= a, h(x) 6∈ y | X = x, Y = a) = 0.

b) if h(x) 6= a, EP [LA(h(X),Y) | x, a] = P (h(x) 6∈ Z | X = x, Y = a)
= 1 − P (h(x) ∈ Z | X = x, Y = a) ≥ 1 − ǫa.

We conclude by taking expectation over x:

EP [LA(h(X),Y) | Y = a] = P (h(X) = a|Y = a)EP [LA(h(X),Y) | h(X) = a, Y = a]

+ P (h(X) 6= a|Y = a)EP [LA(h(X),Y) | h(X) 6= a, Y = a]

≥ 0 + P (h(X) 6= a | Y = a) · (1 − ǫa)

= (1 − ǫa) · EP [L(h(X), Y ) | Y = a].

Proof of Proposition 5 (Partial label consistency). We assume g(x) is found by
minimizing over an appropriately rich sequence of function classes (Tewari and Bartlett,
2005), in our case, as m → ∞, G → R

L . Hence we can focus on analysis for a fixed x
(with P (X = x) > 0), writing ga = ga(x), and for any set c ⊆ {1, . . . , L}, gc =

∑

a∈c ga/|c|
and Pc = P (Y = c|X = x). We also write Pa = P (a ∈ Y|X = x) for any label a, and use
shorthand Pc,a = Pc∪{a} and gc,a = gc∪{a}. We have:

Lψ(g) =
∑

c

Pc ·
(

ψ(gc) +
∑

a/∈c

ψ(−ga)
)

.

Note that the derivative ψ′(·) exists and is non-positive and non-decreasing by assumption
and ψ′(z) < 0 for z ≤ 0. The assumptions imply that ψ(−∞) → ∞, so assuming that
Pa < 1, minimizers are upper-bounded: ga <∞. The case of Pa = 0 leads to ga → −∞ and
it can be ignored without loss of generality, so we can assume that optimal g is bounded
for fixed p with 0 < Pa < 1.
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Taking the derivative of the loss with respect to ga and setting to 0, we have the first
order optimality conditions:

∂Lψ(g)

∂ga
=
∑

c:a 6∈c

Pc,aψ
′(gc,a)

|c| + 1
− (1 − Pa)ψ

′(−ga) = 0.

Now suppose (for contradiction) that at a minimizer g, b ∈ arg maxa′ ga′ but Pa > Pb
for some a ∈ arg maxa′ Pa′ . Subtracting the optimality conditions for a, b from each other,
we get

∑

c:a,b/∈c

Pc,aψ
′(gc,a) − Pc,bψ

′(gc,b)

|c| + 1
= (1 − Pa)ψ

′(−ga) − (1 − Pb)ψ
′(−gb).

Since ga ≤ gb, ψ
′(gc,a) ≤ ψ′(gc,b) and ψ′(−ga) ≥ ψ′(−gb). Plugging in on both sides:

∑

c:a,b/∈c

(Pc,a − Pc,b)ψ
′(gc,b)

|c| + 1
≥ (Pb − Pa)ψ

′(−gb).

By dominance assumption, (Pc,a − Pc,b) ≥ 0 and since (Pb − Pa) < 0 and ψ′(·) is non-
positive, the only possibility of the inequality holding is that ψ′(−gb) = 0 (which implies
gb > 0) and (Pc,a − Pc,b)ψ

′(gc,a) = 0 for all c. But (Pb − Pa) < 0 implies that there exists
a subset c such that (Pc,a − Pc,b) > 0. Since b ∈ arg max g, gc,b ≤ gb, so gc,b ≤ 0, hence
ψ′(gc,b) < 0, a contradiction.

When P (y | x) is deterministic, let P (y|x) = 1(y = a). Clearly, if ǫ < 1, then a =
arg maxa′ Pa′ and Pa = 1 > Pa′ , ∀a′ 6= a. Then the minimizer g satisfies either (1) ga → ∞
(this happens if ψ′(·) < 0 for finite arguments) while ga′ are finite because of (1−Pa′)ψ(−ga′)
terms in the objective or (2) g is finite and the proof above applies since dominance holds:
Pc,b = 0 if a /∈ c, so we can apply the theorem.

Proof of Proposition 6 (Comparison between partial losses). Let a∗ = arg maxa∈1..L ga(x).
For the first inequality, if a∗ ∈ y, Lmaxψ (g(x),y) ≥ 0 = 2LA(g(x),y). Otherwise a∗ /∈ y:

Lmaxψ (g(x),y) ≥ ψ(max
a∈y

ga(x)) + ψ(−ga∗(x)) ≥ ψ(ga∗(x)) + ψ(−ga∗(x))

≥ 2ψ

(
ga∗(x) − ga∗(x)

2

)

= 2ψ(0) ≥ 2LA(g(x),y).

The second inequality comes from the fact that

max
a∈y

ga(x) ≥ 1

|y|
∑

a∈y

ga(x).

For the third inequality, we use the convexity of ψ:

ψ

(

1

|y|
∑

a∈y

ga(x)

)

≤ 1

|y|
∑

a∈y

ψ(ga(x)).
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For the tightness proof: When ga(x) = constant over a ∈ y, we have

ψ

(

max
a∈y

ga(x)

)

= ψ

(

1

|y|
∑

a∈y

ga(x)

)

=
1

|y|
∑

a∈y

ψ (ga(x)) ,

implying Lmaxψ (g(x),y) = Lψ(g(x),y) = Lnaiveψ (g(x),y).

As for the first inequality, we provide a sequence g(n) that verifies equality in the limit:

let g
(n)
a (x) = −1/n if a ∈ y, g

(n)
b (x) = 0 for some b /∈ y, and g

(n)
c (x) = −n for all c /∈ y, c 6= b.

Then provided ψ(0) = 1 and limu→∞ ψ(u) = 0, we have limn→+∞ Lmaxψ (g(n)(x),y) = 2 and

for all n, LA(g(n)(x),y) = 1.

Proof of Proposition 7 (Generalization bounds). The proof uses Definition 11
for Rademacher and Gaussian complexity, Lemma 12, Theorem 13 and Theorem 14 from
Bartlett and Mendelson (2002), reproduced below and adapted to our notations for com-
pleteness. We apply Theorem 13 with L := 1

LLA, φ := 1
LLψγ

:

1

L
EP [LA(g(X),Y)] ≤ 1

L
ES [Lψγ

(g(X),Y)] +Rm(φ̄ ◦ G) +

√

8 log(2/η)

m
.

From Lemma 12, Rm(φ̄◦G) ≤ 1
cGm(φ̄◦G). From Theorem 14, Gm(φ̄◦G) ≤ 2λ

∑L
a=1 Ĝm(Ga).

Let (νi) be m independent standard normal random variables.

Ĝm(Ga) = Eν

[

sup
ga∈Ga

2

m

∑

i

νiga(xi) | S
]

=
2

m
Eν

[

sup
||wa||≤B

wa ·
∑

i

νif(xi) | S
]

=
2B

m
Eν

[

||
∑

i

νif(xi)|| | S
]

=
2B

m
Eν





√
∑

ij

νiνjf(xi)T f(xj) | S





≤ 2B

m

√
√
√
√
√Eν




∑

ij

νiνjf(xi)T f(xj) | S



 =
2B

m

√
∑

i

Eν

[
ν2i ||f(xi)||2 | S

]

=
2B

m

√
∑

i

||f(xi)||2.

Putting everything together, Rm(φ̄ ◦ G) ≤ 2λL
c Ĝm(Ga) ≤ 4λLB

mc

√∑

i ||f(xi)||2 and:

EP [LA(g(X), Y )] ≤ ES [Lψγ
(g(X),Y)] +

4λBL2

mc

√
∑

i

||f(xi)||2 + L

√

8 log(2/η)

m
.

The Lipschitz constant from 14 can be computed as λ := p
γ

√
L, using the Lipschitz constant

of the scalar function ψγ , which is p
γ , and the fact that ||g(x)||1 ≤

√
L||g(x)||2.
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Definition 11 (Definition 2 from Bartlett and Mendelson (2002) ) Let µ be a prob-
ability distribution on a set X and suppose that S = {xi}mi=1 are independent samples sam-
pled from µ. Let G be a class of functions X → R. Define the random variables

R̂m(F) = Eσ

[

sup
f∈F

2

m

∑

i

σif(xi) | S
]

,

Ĝm(F) = Eν

[

sup
f∈F

2

m

∑

i

νif(xi) | S
]

,

where (σi) are m independent uniform {±1}-valued random variables and (νi) are m in-
dependent standard normal random variables. Then the Rademacher (resp. Gaussian)
complexity of G is Rm(F) = ES [R̂m(F)] (resp. Gm(F) = ES [F̂m(F)]).

Rm(F) and Gm(F) quantify how much can a f ∈ F be correlated with a noise sequence of
length m.

Lemma 12 (Lemma 4 from Bartlett and Mendelson (2002) ) There are absolute con-
stants c and C such that for every class G and every integer m,

cRm(G) ≤ Gm(G) ≤ C logmRm(G).

Theorem 13 (Theorem 8 from Bartlett and Mendelson (2002) ) Consider a loss func-
tion L : A × Y 7→ [0, 1] and a dominating cost function φ : A × Y → [0, 1], where A is
an arbitrary output space. Let G be a class of functions mapping from X to A and let
S = {(xi, yi)}mi=1 be independently selected according to the probability measure P . Define
φ̄ ◦ G = {(x, y) 7→ φ(g(x), y) − φ(0, y) : g ∈ G}. Then, for any integer m and any η ∈ (0, 1),
with probability at least 1 − η over samples of length m, ∀g ∈ G:

EP [L(g(X), Y )] ≤ ESφ(g(X), y) +Rm(φ̄ ◦ G) +

√

8 log(2/η)

m
.

Theorem 14 (Theorem 14 from Bartlett and Mendelson (2002) ) Let A = R
L, and

let G be a class of functions mapping X to A. Suppose that there are real-valued classes
G1, ...,GL such that G is a subset of their direct sum. Assume further that φ : A×Y → R is
such that, for all y ∈ Y, φ(·, y) is a Lipschitz function (with respect to Euclidean distance
on A) with constant λ which passes through the origin and is uniformly bounded. For g ∈ G,
define φ◦g as the mapping (x, y) 7→ φ(g(x), y). Then, for every integer m and every sample
S = {(xi, yi)}mi=1,

Ĝm(φ ◦ G) ≤ 2λ
L∑

a=1

Ĝm(Ga),

where Ĝm(φ ◦ G) are the Gaussian averages of φ ◦ G with respect to the sample {(xi, yi)}mi=1

and Ĝm(Ga) are the Gaussian averages of Ga with respect to the sample {xi}mi=1.
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Proof of Proposition 8 (Generalization bounds on true loss). This follows from
Propositions 7 and 1.

Proof of Lemma 9. Let us write z = z(x), y = y(x),y = y(x).

• Let a ∈ z. By hypothesis, ∃x′ ∈ Bη(x) : ga(x
′) ≤ −η

2 . By definition of Bη(x),

ga(x) = ga(x
′) + wa · (f(x) − f(x′)) ≤ ga(x

′) + ||wa||∗η ≤ ga(x
′) + η ≤ η

2
.

In fact, we also have ga(x) < η
2 , by considering two cases (wa = 0 or wa 6= 0) and

using the fact that ||f(x) − f(x′)|| < η.

• Let a /∈ y. Since Lψ(g(x),y) ≤ ψ(η/2) and each term is nonnegative, we have:

ψ(−ga(x)) ≤ ψ(
η

2
) =⇒ ga(x) ≤ −η

2
.

• Let a = y. Lψ(g(x),y) ≤ ψ(η/2) also implies the following:

ψ
(

1
|y|

∑

b∈y gb(x)
)

≤ ψ(
η

2
)

=⇒ 1
|y|

∑

b∈y gb(x) ≥ η

2

=⇒ gy(x) ≥ |y|η
2

−
∑

b∈z

gb(x)

>
|y|η

2
− |z|η

2
=
η

2
.

Finally, ∀a 6= y, ga(x) < gy(x) and g classifies x correctly.

Proof of corollary 10. Let a ∈ z(x), by the empty intersection hypothesis, ∃i ≥
1 : a 6∈ z(xi) and since y(xi) = y(x) and a 6= y(x) we also have a 6∈ y(xi). Since
Lψ(g(xi),y(xi) ≤ ψ(η/2), we have ga(xi) ≤ −η

2 , as in the previous proof. We can ap-
ply Lemma 9 (with x′ = xi).
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with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31–71, 1997. 1228

P. Duygulu, K. Barnard, J.F.G. de Freitas, and D.A. Forsyth. Object recognition as ma-
chine translation: Learning a lexicon for a fixed image vocabulary. In Proc. European
Conference on Computer Vision, pages 97–112, 2002. 1225, 1229

M. Everingham, J. Sivic, and A. Zisserman. Hello! My name is... Buffy – automatic naming
of characters in tv video. In British Machine Vision Conference, 2006. 1226, 1229, 1230,
1248, 1250, 1252

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIB-
LINEAR: A library for large linear classification. Journal of Machine Learning Research,
9:1871–1874, 2008. 1239

1261



Cour, Sapp and Taskar

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view
of boosting. Annals of Statistics, 28:337–407, 2000. 1254

A.C. Gallagher and T. Chen. Using group prior to identify people in consumer images. In
CVPR Workshop on Semantic Learning Applications in Multimedia, 2007. 1225, 1229

Y. Grandvalet and Y. Bengio. Learning from partial labels with minimum entropy. Centre
interuniversitaire de recherche en analyse des organisations (CIRANO), 2004. 1229

G.B. Huang, V. Jain, and E. Learned-Miller. Unsupervised joint alignment of complex
images. In Proc. International Conference on Computer Vision, 2007a. 1227, 1242

G.B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A
database for studying face recognition in unconstrained environments. Technical Report
07-49, University of Massachusetts, Amherst, 2007b. 1240

E. Hullermeier and J. Beringer. Learning from ambiguously labeled examples. Intelligent
Data Analysis, 10(5):419–439, 2006. 1229, 1241

R. Jin and Z. Ghahramani. Learning with multiple labels. In Advances in Neural Informa-
tion Processing Systems, pages 897–904, 2002. 1226, 1229, 1236, 1241

H. Kuck and N. de Freitas. Learning about individuals from group statistics. In Uncertainty
in Artificial Intelligence, 2005. 1228

I. Laptev, M. Marsza lek, C. Schmid, and B. Rozenfeld. Learning realistic human actions
from movies. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,
2008. 1230

J. Luo and F. Orabona. Learning from candidate labeling sets. In Advances in Neural
Information Processing Systems, 2010. 1228

P. Mermelstein. Distance measures for speech recognition, psychological and instrumental.
Pattern Recognition and Artificial Intelligence, pages 374–388, 1976. 1243

P.J. Moreno, C. Joerg, J.M.V. Thong, and O. Glickman. A recursive algorithm for the
forced alignment of very long audio segments. In International Conference on Spoken
Language Processing, 1998. 1243

J.G. Proakis and D.G. Manolakis. Digital signal processing: principles, algorithms, and
applications. Prentice Hall, 1996. 1243

N. Quadrianto, A.J. Smola, T.S. Caetano, and Q.V. Le. Estimating labels from label
proportions. Journal of Machine Learning Research, 10:2349–2374, 2009. ISSN 1532-
4435. 1228

D. Ramanan, S. Baker, and S. Kakade. Leveraging archival video for building face datasets.
In Proc. International Conference on Computer Vision, 2007. 1226, 1230

R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine
Learning Research, 5:101–141, 2004. 1234

1262



Learning from Partial Labels

S. Satoh, Y. Nakamura, and T. Kanade. Name-it: Naming and detecting faces in news
videos. IEEE MultiMedia, 6(1):22–35, 1999. 1226, 1229, 1230
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