
Contextual Weighting for Vocabulary Tree based Image Retrieval

Xiaoyu Wang2, Ming Yang1, Timothee Cour1, Shenghuo Zhu1, Kai Yu1, Tony X. Han2

1NEC Laboratories America, Inc. 2Dept. of ECE, Univ. of Missouri
Cupertino, CA 95014 Columbia, MO 65211

{myang,timothee,zsh,kyu}@sv.nec-labs.com {xw9x9,hantx}@missouri.edu

Abstract

In this paper we address the problem of image retrieval
from millions of database images. We improve the vocabu-
lary tree based approach by introducing contextual weight-
ing of local features in both descriptor and spatial domains.
Specifically, we propose to incorporate efficient statistics of
neighbor descriptors both on the vocabulary tree and in the
image spatial domain into the retrieval. These contextual
cues substantially enhance the discriminative power of
individual local features with very small computational
overhead. We have conducted extensive experiments on
benchmark datasets, i.e., the UKbench, Holidays, and our
new Mobile dataset, which show that our method reaches
state-of-the-art performance with much less computation.
Furthermore, the proposed method demonstrates excellent
scalability in terms of both retrieval accuracy and efficiency
on large-scale experiments using 1.26 million images from
the ImageNet database as distractors.

1. Introduction

Retrieval of visually similar images from large databases
has attracted tremendous research efforts in recent years.
In particular, we consider a specific application scenario
where query images are captured by phone cameras and
database images are millions of original digital copies with
a single image for each object. This scenario presents
some unique challenges: the digital copies may appear
quite different from their physical counterparts, especially
because of lighting, reflections, motion and out-of-focus
blur, not to mention significant viewpoint variations, as
shown in Fig. 1. Moreover, we care mostly about the
top-1 hit rate in this case, as very few candidates can be
retrieved in a practical setting. This scenario is different
from conventional near-duplicate image retrieval [8, 22] and
web image search [17, 21, 23, 24], where both query and
database images are from the same sources, either different
digital versions or solely captured by phone cameras [12, 4].

This challenging task motivates us to further improve

Figure 1. Sample images in our new Mobile dataset: 1st and 4th
columns (in green boxes) are database images and 2nd, 3rd, 5th,
and 6th columns (in blue boxes) are queries captured by phones.

the successful large-scale image retrieval approach based
on vocabulary trees [12]. Nistér and Stewénius [12] have
demonstrated very inspiring retrieval performance using a
large hierarchical vocabulary tree, where local features are
encoded into a bag-of-words (BoW) histogram [16] with
millions of visual words. Therefore, this histogram is so
sparse that inverted index files are well suited to implement
the indexing and searching efficiently. Visual words are
weighted by the TF-IDF (term frequency-inverse document
frequency) [16, 12], where the IDF reflects their discrimina-
tive abilities in database images and the TF indicates their
importance in a query image. Only the feature descriptors,
without the scale and orientation, are used in this method.
Naturally, exploration of rich and discriminative contextual
information pertinent to individual images is crucial to
further boost the performance. However, the key question
is how to incorporate them effectively and efficiently for
retrieval on large-scale image databases.

In this paper, we explore two types of image-dependent
contextual information of local features to boost their dis-
criminative ability. Our context is defined by neighboring
local features, both in terms of the vocabulary tree and in
terms of the spatial image domain. The intuition is that even
for identical local features their importance varies across
images depending on 1) the image-specific frequencies of
similar features, and 2) the compatibility of the spatial
layout of adjacent features. For example, features detected
in large textural regions like grass or carpets are generally
not very informative for retrieval, in contrast, a small grass
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region on a book cover or certain special patterns on carpets
could be quite helpful. The TF-IDF weighting based on the
entire image database cannot adequately address either of
these two issues. Thus, we propose a descriptor contex-
tual weighting (DCW) and a spatial contextual weighting
(SCW) of local features. The DCW leverages the frequen-
cies of descriptors’ quantization paths on a vocabulary tree
in one image, where less informative features are softly
down-weighted. The SCW utilizes efficient spatial contex-
tual statistics for each local feature, including the density of
its adjacent features and their scales and orientations. These
statistics are purely local and translation, scale, and rotation
invariant, which preserve rich descriptive information of
single local features.

The proposed contextual statistics differ from existing
efforts [14, 4, 6, 18, 21, 23] utilizing geometrical relations
among local features in that we do not assume global
geometrical transforms or identify feature groups. A global
transform between the query and database images is explic-
itly [14] or implicitly [4, 6] assumed when imposing strong
geometrical constraints in a verification stage [14] or weak
geometry constraints during retrieval [4, 6], which is restric-
tive. Constructing reliable high-order features [18, 21, 23]
is a difficult and open task itself. Furthermore, most of these
methods induce considerable computations, e.g., Maha-
lanobis distance calculations [23] or random projections [6]
for each feature descriptor. In contrast, our contextual
statistics involve no high dimensional operations.

These two methods, descriptor and spatial contextual
weighting, are complimentary to each other since they
rely on different cues. Integrating them in the vocabulary
tree based retrieval improves the performance remarkably
with small computational overhead compared with [12].
We have conducted extensive experiments to validate our
proposed approach on two benchmark datasets, i.e., the
UKbench [12] and Holidays datasets [4], and a new Mobile
dataset that we collected where all queries are taken by
phone cameras in different locations. We further employ
the 1.26 million images in the training set of the ImageNet
Challenge [2] as distractors to assess the large-scale re-
trieval performance. Our method demonstrates excellent
scalability in both retrieval accuracy and efficiency in that
it leads to consistent large performance gains on the large-
scale database, e.g., the mean average precision (mAP)
improves by 10.0% and 12.5% respectively using the UK-
bench and Holidays datasets as queries compared with [12].

The scalability of an image retrieval algorithm can be
assessed in terms of accuracy, efficiency and memory usage.
The major contributions of this paper, i.e., the descriptor and
spatial contextual weighting schemes, focus on the accuracy
and efficiency. Our approach is practical and can be easily
reproduced by other researchers. We employ the training
set of the ImageNet Challenge [2] as distractors in the

large-scale experiments, which includes 1,261,392 images
covering 1000 categories of objects. Several proprietary
databases were used as distractors in the literature [3, 14,
1, 15, 4, 21, 5, 6, 23, 24] where the images are not publicly
available. Hence, researchers cannot directly compare the
performance of different large-scale experiments. Since
the ImageNet dataset is publicly available and contains
sufficient large variations, it is well suited to benchmark the
retrieval accuracy, computation, and memory usage for the
large-scale image retrieval task.

2. Related Work

In recent years, retrieval of visually similar images
based on local invariant features [10, 11] and the BoW
representation [16] has been significantly scaled up by
the use of large hierarchical vocabulary trees [12]. Such
trees typically contain millions of leaf nodes (representing
visual words), resulting in very sparse BoW histograms.
Thus, each visual word only appears in a small number
of images, indexed by inverted files, making retrieval of
images containing that visual word very efficient. The use
of a tree structure dramatically reduces the computation
time required to quantize a feature descriptor into one of
millions of words, e.g., for a tree with 7 layers and branch
factor 10, only 7 × 10 inner products of 128-D SIFT
descriptors are needed, instead of 107 for a flat structure.

Inspired by [12], several researchers have improved the
retrieval accuracy of this approach from different perspec-
tives, e.g., by introducing a post spatial verification by
RANSAC [14]; applying the query expansion which re-
issues the initial retrieval results as queries [1]; softly as-
signing descriptors to multiple words [15]; imposing weak
geometry constraints [4]; building high-order features [18,
21, 23]; and extending to local BoW models [9]. Most of
these methods induce considerable computations, e.g., the
spatial verification or query expansion are much slower than
the retrieval, identification of reliable composite features is
also costly. Instead, our method addresses both retrieval
accuracy and efficiency. Compact feature representation-
s [17, 13] are not addressed in this paper.

Another line of research [4, 5, 6, 7] employs a flat
structure codebook with much less visual words (typical-
ly from 20K to 30K [5, 7]), which results in a coarse
quantization of the descriptor space. This leads to three
issues: 1) these methods are generally computationally
intensive due to more computation during quantization and
longer inverted image lists for each visual word; 2) the
quantization error tends to be large which is addressed
by thresholding a Hamming embedding distance [4, 6] to
discard some descriptors or learning a context dissimilarity
measure [7] of visual word vectors; and 3) many descriptors
may be quantized to the same word, i.e., the burstiness
phenomenon [5], which is alleviated by down-weighting
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their IDFs. The combination of these methods has achieved
very good performance. The burstiness problem bears
similar motivation as our descriptor contextual weighting.
However, the fundamental difference is that the burstiness
phenomenon rarely occurs for large vocabulary trees with
millions of nodes, even though the descriptors may be
similar. Thus, our DCW leverages the frequencies of node
paths on a tree to re-weight the IDF. In addition, the IDF is
only altered by database image burstiness in [5], in contrast,
the DCW considers both query and database images. Our
proposed approach combining DCW and SCW achieves
comparable performance as [4, 5, 6, 7], but with a much
smaller computational cost.

3. Proposed Approach

We first present the voting interpretation of vocabulary
tree based image retrieval [12], then describe our new
descriptor and spatial contextual weighting methods.

3.1. Image retrieval with vocabulary trees

Let T be a vocabulary tree obtained by hierarchical
K-means clustering of local descriptors (extracted from a
separate dataset), with a branch factor K and depth L. Each
node v�,h� (v for short) in the tree represents a visual word,
where � indicates its layer and h� is the node index at that
layer. We do not discern tree nodes and visual words in the
following descriptions.

A query image q is represented by a bag Iq of local
descriptors {xi}i∈Iq , in our case xi ∈ R

D represents SIFT
descriptors of dimension D = 128. Each xi is mapped to a
path of visual words from the root to a leaf of T , resulting
in the quantization T (xi) = {v�,h�

i }Li

�=1. Note Li ≤ L
since the tree may be incomplete. Thus, a query image
is eventually represented by the set of node paths obtained
from its descriptors, i.e., {T (xi)}i∈Iq .

The database images are denoted by {dm}Mm=1, and
we will omit superscript m when the context is clear.
Following the same hierarchical quantization procedure, the
local descriptors yj in d are mapped to the collection of
node paths {T (yj)}j∈Id . The similarity score sim(q, d)
between query q and database image d is specified by the
average matching score among all pairs of descriptors or
node paths [12]:

sim(q, d)
.
=

1

|Iq||Id|
∑

i∈Iq ,j∈Id

f(xi,yj), (1)

where the matching function f of two descriptors can be
further expressed by a matching function fv on tree nodes:

f(xi,yj)
.
= fT (T (xi), T (yj))

.
=

∑
vi∈T (xi),vj∈T (yj)

fv(vi, vj).

(2)

In [12], fv is defined via a weighting function w(v) over
visual words v:

fv(vi, vj) = w(vi)1(vi = vj), (3)

where 1(·) is the indicator function. The authors [12] use
the following expression:

w(v) = idf(v) = log

(
M

Mv

)
, (4)

where M is the total number of database images and Mv

is the number of images containing at least one descriptor
that quantizes to the node v; it is computed recursively for
non-leaf nodes. Note, multiple descriptors quantized to the
same visual word v in the query image will contribute w(v)
multiple times to the matching score, which is equivalent to
the term frequency, TF.

Usually, the number of descriptors in a query is up to
several thousands, so the accumulation of matching scores
in Eq. (1) is akin to a voting procedure for the most
similar images in the database. The images d with highest
similarity sim(q, d) are returned as the retrieval set.

Since the vocabulary tree is very large, the number of
images whose descriptors are quantized to a particular node
is rather small. Therefore, inverted index files attached
to leaf nodes allow a very efficient implementation of this
voting procedure. Due to efficiency concerns, only deeper
layer nodes are used in Eq. (2), using a stop level or stop
list [12]. Using the leaf nodes only in Eq. (2) yields fastest
retrieval speed, but usually with limited accuracy. The
storage of inverted index files is proportional to the total
number of descriptors in the database, i.e.,

∑M
m=1 |Idm |.

3.2. Descriptor contextual weighting

The discriminative power of descriptors, even the iden-
tical ones, varies in different images. Descriptors detected
on large textural regions, e.g., carpets, grass, and soils, are
less informative, although their numbers could dominate in
an image. In the TF–IDF weighting, their IDFs, which are
not necessarily small when calculated from a large image
database, contribute to the matching score many times via
their TFs. This over-counting may lead to noisy retrieval
results. Such descriptors should be down-weighted to avoid
this. Different from a flat codebook, for a large tree T , these
descriptors fall into a number of leaf nodes or sub-trees,
so the burstiness of visual words [5] seldom happens with
leaf nodes, and penalizing the IDF according to visual word
counts in the database [5] is not effective with large trees.

Motivated by this observation, we propose to incorpo-
rate inverse weighted counts of a node path as descriptor
contextual weights in addition to the IDF weight. Suppose
descriptor xi in q and yj in d are quantized to the same
node v ∈ T (xi)∩T (yj), with the knowledge of q and d we
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modify the weighting function w(v) in Eq. (4) to:

wq,d
i,j (v) = wq

i wd
j idf(v). (5)

Denoting nq(v) as the number of descriptors in image q that
are quantized to v, we define the DCW termwq

i based on the
node counts along the quantization path of xi:

wq
i =

√ ∑
v∈T (xi)

ω(v)∑
v∈T (xi)

ω(v)× nq(v)
, (6)

where ω(v) is a weighting coefficient, set to idf(v) empir-
ically. Note the subtlety that the weight wq

i depends on the
descriptor only, and is shared for all nodes v along the path
T (xi). As shown in Fig. 2, if two descriptors xi and xi′

only differ at the leaf node, their common parent node will
have different weights wq,d

i,j (v) and wq,d
i′,j(v) in Eq. (5).

… …)( 1,1 hvω

)( 1,1 −− LhLvω

)( , LhLvω

)( 1,1 hq vn

)( 1,1 −− LhLq vn

)( , LhLq vn
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N
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N
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)( ', LhLvω
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Figure 2. Illustration of the descriptor contextual weighting.

The choice of using inverse weighted counts of a node
path in Eq. (6) is justified by the characteristics of vocabu-
lary trees. Since the tree is deep, the majority of leaf nodes
(over 95% in the experiments) only have one descriptor
being quantized to it for one image. In view of this,
Eq. (6) actually takes into account the descriptors quantized
to neighbor tree nodes to determine the importance of a
descriptor in retrieval, where nodes in a sub-tree with more
descriptors is softly down-weighted compared to a sub-
tree with fewer descriptors. The square root in Eq. (6) is
due to the weighting of both query and database images.
In practice, the descriptor contextual weights are mainly
determined by the tree nodes in deeper layers. Fig. 3 shows
the impacts of DCW, where green discs indicate the original
IDF weights and red discs indicate the DCW weights, with
the radius proportional to their strengths. Small red discs
indicate less discriminative descriptors are being heavily
down-weighted according to DCW for a particular image.

lightly 
down-weighted

heavily 
down-weighted

heavily 
down-weighted

lightly 
down-weighted

Figure 3. Impact of DCW: small red discs represent features that
are heavily down-weighted (up to 400 features are drawn).

The DCW dramatically enhances the discriminative a-
bility of local descriptors as shown in the experiments.
Furthermore, it has a negligible computation overhead. The
only cost is the additional storage of wd

j for each descriptor
yj of database images in inverted index files, which is one
additional byte per descriptor in our implementation.

3.3. Spatial contextual weighting

Local descriptors are not independent and their neigh-
borhoods contain much rich information. As shown in
Fig. 4(a), descriptors on clubs are all similar and unable to
distinguish club A or club 8, unless we explore their neigh-
borhoods. Nevertheless, in general it is costly to exploit
high order information of local descriptors. We propose
to employ simple statistics in the local neighborhood of
an invariant feature as its spatial context to enhance its
discriminative ability.

* Density of neighbor descriptors 
* Mean relative log scale 
* Mean orientation difference

Example of features which have similar descriptors 
but different neighborhood statistics

(a) (b)

3=ρ

3
0201 ssss
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θ
−+−

=Δ

00,θs
11,θs

22,θs

R

C
jiw ,

C
jiw ', C

jiw ','

C
jiw ,'

Figure 4. Illustration of the spatial contextual weighting.

A SIFT feature f0 = {x0,u0, s0, θ0} includes the
descriptor x0 ∈ R

D, location u0, characteristic scale s0
(in the log domain), and orientation θ0. Let C(f0) denote
the neighborhood of this feature given by the disc (u0, R).
Empirically we set the radius R = 12 × 2s0 (maximum
150 pixels). We calculate 3 statistics of C(f0), i.e., the
descriptor density ρ, the mean relative log scale Δs, and
the mean orientation difference Δθ, w.r.t f0, defined as

ρ = |C(f0)|, (7)

Δs =
1

|C(f0)|
∑

f∈C(f0)

|s− s0|, (8)

Δθ =
1

|C(f0)|
∑

f∈C(f0)

|θ − θ0|, (9)

where |C(f0)| is the number of descriptors within (u0, R).
These statistics are translation, scale and rotation invariant.

Given two descriptors quantized to the same tree node,
we measure the consistency of their local neighborhoods
and add a spatial context term wC

i,j in the matching score.
The matching for each statistic, in the range of [0, 1], is
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defined as follows

wρ
i,j =

min(ρi, ρj)

max(ρi, ρj)
, (10)

ws
i,j =

min(Δsi,Δsj)

max(Δsi,Δsj)
, (11)

wθ
i,j =

min(Δθi,Δθj)

max(Δθi,Δθj)
. (12)

Thus, the matching score of the spatial context is given by

wC
i,j = wρ

i,j w
s
i,j w

θ
i,j . (13)

Plug it into Eq. (5), the final matching function is updated
to

wq,d
i,j (v) = wC

i,jw
q
i wd

j idf(v). (14)

These simple contextual statistics effectively enhance
the descriptive ability of individual features with a small
computational overhead. It avoids explicit identification of
reliable feature groups as required in [23]. In addition, these
statistics are purely local. We do not implicitly assume a
global geometrical transform exists among all descriptors,
contrary to the weak geometric constraints used in [4, 6].
The search of neighbor features f ∈ C(f0) is shared by
the 3 statistics and can be computed efficiently. In the
inverted index files, we need to store ρ, Δs, and Δθ for
each descriptor in the database. We quantize each of them
to one byte, so there are 3 additional bytes per descriptor.

4. Time and Memory Complexity

In this section, we briefly study the computational com-
plexity and memory requirement of the proposed image
retrieval algorithm.

For one query image, besides SIFT feature detection,
our retrieval approach involves tree-based quantization,
context statistics calculation, followed by matching score
calculation for the selected database image descriptors, and
finally sorting of the retrieved candidate images d according
to sim(q, d). In terms of scalability, there are two different
kinds of computations: independent or proportional to the
database size. The descriptor quantization and calculation
of spatial contexts are determined by the number of de-
scriptors in the query image. The tree quantization involves
KL inner products of D dimensional vectors per descriptor.
Search of the neighborhood C(f) of a feature f can be
implemented by a branch-and-bound method on the image
coordinate u. In the large-scale case, the matching score
calculation in Eq.(14), which is related to the number of
images returned by the inverted lists, consumes most of the
running time. The matching scores of ρ, Δs, and Δθ are
obtained by look-up tables in our implementation. Overall,
besides the descriptor quantization, the proposed algorithm
does not induce any extra high dimensional operations, such

as matrix multiplication in a Mahalanobis distance or ran-
dom projections of descriptors, therefore the computational
overhead compared with [12] is very low.

During retrieval, all the information about the database
images is accessed from the inverted index files. We use 8
bytes per database image descriptor: one 4-byte integer for
the image index 1, 1 byte for quantized descriptor contextual
weight wd

j , and 3 bytes for quantized ρ, Δs, and Δθ.
This doubles the memory for the inverted indexes compared
to [12]. To optimize the memory usage, we can use
compact data structures [6] or employ lossless compression
for descriptors linked to the same leaf node, since they are
always consumed at the same time during retrieval. Note,
if all inverted index files are not loaded to memory, the disk
access will slow down the process by orders of magnitude.

5. Experiments

After explaining the datasets and evaluation criteria, we
first evaluate the retrieval performance of the descriptor and
spatial contextual weighting using vocabulary trees with
different branch factors and depths, then present the large-
scale image retrieval experiments with 1.26 million images,
and compare with the state-of-the-art methods.

The common settings for all experiments are summa-
rized here. All the images are resized to no larger than
640 × 640. Up to 2500 SIFT features are detected for
each image using the VLFeat library [19]. The program
is implemented in C++ with moderate code optimization.
All timings are based on a single core of an 8-core Xeon
2.44GHz blade server with 32G RAM.

5.1. Datasets

In the following, we list the datasets in the experiments
and the corresponding evaluation criteria.

UKbench was collected by [12], and includes 2550
different objects or scenes. Each one has four images
taken from different viewpoints. All the 10200 images
are both indexed as database images and used as queries.
The retrieval performance is measured by 4× recall at the
first four returned images, referred as N-S score [12, 7]
(maximum is 4), and the mean average precision (mAP).

Holidays contains 1491 personal holiday photos under-
going various transformations; it was first used in [4]. There
are 500 image groups where the first image of each group
is the query. The performance is measured by mAP in a
leave-one-out fashion.

Mobile includes images of 300 objects, e.g., movie
posters, book and magazine covers 2. The 2000 query
images were captured by an iPhone and an Android phone.
The database indexes 300 images of the digital copies

1We assume M ≤ 232. For our experiments, the image indexes can be
saved with 3 bytes, but we prefer 4-byte aligned memory access.

2The Mobile dataset is available at http://vision.ece.missouri.edu/˜wxy/
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Dataset # images # labels # queries # descriptors

UKbench 10,200 2,550 10,200 25,483,644
Holidays 1,491 500 500 3,726,796
Mobile 2,300 300 2000 5,864,285
ImageNet-T 1,261,392 N/A N/A 2,753,233,269
ImageNet-V 50,000 N/A N/A 109,509,968

Table 1. Statistics of the image datasets in the experiments.

Tree K L # leaves # nodes

T − 86 8 6 257,886 295,112
T − 87 8 7 1,531,063 1,800,014
T − 106 10 6 891,153 999,161
T − 107 10 7 2,785,337 3,429,762

Table 2. Vocabulary trees with different parameters. Note, # leaves
are smaller than the ideal case when the tree is not complete.

downloaded from internet blended by the 10200 images
from the UKbench dataset as distractors. We evaluate the
top-1 (τ1) and top-10 (τ10) hit rates on this dataset.

ImageNet is an image database crawled from internet ac-
cording to the WordNet hierarchy [2]. The ImageNet Large
Scale Visual Recognition Challenge 2010 (ILSVRC2010)
clearly specifies 1.26M images of 1000 categories as the
training set (denoted by ImageNet-T) and 50K images as
the validation set (denoted by ImageNet-V).

We employ the ImageNet-T as distractor images to
perform the large-scale experiment. ImageNet-V is used to
train all the vocabulary trees in the paper. Note, ImageNet-
V has no overlap with the UKbench, Holidays, Mobile, and
ImageNet-T datasets. These datasets cover large varieties
of images, e.g., indoor/outdoor scenes and objects. The
statistics are summarized in Table 1.

5.2. Retrieval performance

We study the retrieval performance with different vocab-
ulary trees, which are trained on the independent ImageNet-
V dataset by performing hierarchical K-means on 8 million
randomly sampled SIFT descriptors. The parameters of
trees are shown in Table 2. The baseline method [12]
using the leaf nodes only is denoted by B1 and the method
that uses tree nodes up to 3 layers is denoted by B3. We
set a stop ratio r = 0.015 to limit the maximum number
of database images attached to a non-leaf node, i.e., we
exclude the node if the length of its inverted list exceeds
rM . Our methods that extend B3 are denoted by B3+DCW,
B3+SCW, and B3+DCW+SCW. We mainly compare our
method against B3, while B1 is present to show the possibly
fastest retrieval speed.

As shown in Table 3, 4 and 5, the proposed method
demonstrates consistent improvement on the UKbench,
Holidays, and Mobile datasets and is insensitive to vocabu-
lary tree parameters. Using the largest tree T − 107 as an
example, compared with B3 the proposed method improves

the N-S score from 3.38 to 3.56 while the mAP jumps from
87.76% to 91.70% on the UKbench dataset. The mAP on
the Holidays dataset is improved from 71.71% to 78.05%.
On the Mobile dataset, the top-1 hit rate jumps from 68.80%
for B3 to 83.80% 3. These tables also report the aver-
age retrieval time tr per query, which includes descriptor
quantization, context statistics matching, calculation of all
the weights and matching scores, and sorting of candidate
images. It does not include SIFT feature extraction, which
could be done efficiently on the GPU. We observe almost
no overhead results from incorporating DCW, and overall
tr increases by 30ms over the baseline B1.

5.3. Large-scale experiments

The common practice [12, 3, 14, 1, 4, 15, 21, 6, 23]
to evaluate large-scale image retrieval performance is to
employ a large image database as distractors included in
the retrieval database. We follow the same scheme and
employ different numbers of images from ImageNet-T as
distractors, i.e., the first 120K, 265K, 590K images and
the entire set of 1.26M images. These large-scale exper-
iments are extremely time-consuming. With the help of
the Hadoop [20] distributed computing framework, we have
extracted the SIFT features and generated inverted index
files in 10 and 4 hours, respectively, using 20 blade servers.

The contextual weighting demonstrates excellent gener-
alization capability and scalability on large-scale datasets as
shown in Table 6 and Fig. 5. First, the retrieval performance
degrades gracefully w.r.t increasing numbers of database
images, e.g., the N-S score only drops from 3.56 to 3.30 for
1.26M database images. Second, on all three test datasets,
the performance gains over B3 keep increasing along with
the database size. Especially for the Mobile dataset, the top-
1 accuracy improves by 23.1%, that is indeed significant
for our application scenario. Third, the retrieval time scales
up very well to merely 676ms for 1.26M images. These
validate the excellent scalability of the proposed method.
The memory usage of the inverted index files increases
w.r.t the database size. For 1.26M images, the baseline
requires 10.4Gbytes using 4 bytes for image indexes, while
our method requires 20.8Gbytes.

We have investigated how to compare large-scale re-
trieval performance with recent methods on both accuracy
and efficiency, and found out a fair comparison is not
straightforward since different private image collections
were used. This motivated us to use instead the public
ImageNet-T dataset. We compare the retrieval accuracy
using the standard settings on the UKbench and Holidays
datasets, and report tr per query on at least 1M images,
as summarized in Table 7 4. Note, tr depends on many

3Oxford5K [14, 1, 15] is another popular dataset, our method
(B3+DCW+SCW) improves the mAP of B3 from 60.1% to 68.6%.

4The result of [21] is reported according to the comparison in [23].
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UKbench T − 86 T − 87 T − 106 T − 107

N-S mAP(%) N-S mAP(%) N-S mAP(%) N-S mAP(%) tr(ms)

B1 3.18 83.54 3.06 80.40 3.11 81.69 3.08 80.63 50
B3 3.23 84.59 3.23 84.68 3.24 84.86 3.38 87.76 54 (+ 4)
B3+SCW 3.33 86.84 3.32 86.52 3.33 86.79 3.43 89.04 78 (+28)
B3+DCW 3.26 84.99 3.37 87.73 3.36 87.43 3.46 89.55 55 (+ 5)
B3+DCW+SCW 3.41 88.32 3.47 89.93 3.46 89.66 3.56 91.70 80 (+30)

Table 3. Image retrieval performance on the UKbench dataset using different vocabulary trees.

Holidays T − 86 T − 87 T − 106 T − 107

mAP(%) mAP(%) mAP(%) mAP(%) tr(ms)

B1 66.07 62.91 64.98 61.21 50
B3 66.05 66.45 69.73 71.71 51 (+ 1)
B3+SCW 70.20 70.18 72.30 74.88 75 (+25)
B3+DCW 68.73 68.90 70.35 74.55 52 (+ 2)
B3+DCW+SCW 69.96 73.37 74.41 78.05 76 (+26)

Table 4. Image retrieval performance on the Holidays dataset using different vocabulary trees.

Figure 5. Large-scale image retrieval performance with different
numbers of distractor images from the ImageNet-T.

factors (e.g., a quad core was used in [6]), which are not
directly comparable, so we list them as a rough indication
of efficiency. It is worthwhile to clarify the comparison
conditions. We only compare with the methods where 1)
the K-means clustering is carried on an independent set,
2) no re-ranking is used, and 3) the query images are
not somewhat used in a learning procedure to determine
parameters of the retrieval system. As reported in previ-
ous works [12, 6, 7], the retrieval performance could be
improved largely if query or database images are used to
obtain vocabulary trees. Learning the feature dissimilarity
on the database, which contains the queries, achieves N-
S score 3.61 in [7], which may not scale to large-scale
datasets [5]. These comparisons show that our method
reaches the state-of-the-art performance on the retrieval
accuracy with less computation.

UKbench Holidays ≥1M
Method N-S mAP(%) mAP (%) tr (s)

Nistér et al. [12] 3.19 76.0 n/a 1
Wu et al. [21] 3.15 n/a n/a 1.9
Zhang et al. [23] 3.19 n/a n/a 3
Lin et al. [9] 3.29 n/a n/a n/a
Jégou et al. [6] 3.42 87.80 81.3 4.2
Jégou et al. [5] 3.54 90.70 83.9 6.2
Proposed 3.56 91.70 78.0 0.676

Table 7. Comparison with recent methods.

5.4. Discussions

We show sample failure cases of our method in Fig. 6,
from which we observe that lighting, especially severe
reflections, motion blur, and clutter are the major issues.
In particular, for the Mobile dataset, the original digital
copy may appear quite distinct from the queries captured
by phone cameras and the database images do not contain
multiple near-duplicate copies of an image. Additional
retrieval results are in the supplemental materials. We
only employ SIFT features in the retrieval. Some failure
cases may thus be resolved by combining with other cues
such as GIST [17] or color features. Post processing such
as spatial verification or re-ranking [14] and the query
expansion [1] can be readily combined with our algorithm.

6. Conclusions

In this paper, we propose two new weighting schemes to
improve the vocabulary tree based image retrieval, which
consider contextual information of a local feature in both
descriptor and spatial domain. These approaches are very
efficient and demonstrate excellent scalability for large-
scale databases. They can be easily implemented by other
researchers to reproduce the results. We have conducted the
large-scale experiments using the ImageNet-T dataset, thus,
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Mobile T − 86 T − 87 T − 106 T − 107

τ1 (%) τ10 (%) τ1 (%) τ10 (%) τ1 (%) τ10 (%) τ1 (%) τ10 (%) tr(ms)

B1 64.35 74.25 63.05 72.60 64.40 73.15 68.39 77.15 50
B3 63.30 73.35 62.90 73.25 64.10 74.70 68.80 78.00 54 (+ 4)
B3+SCW 68.20 78.10 68.20 78.10 69.40 78.85 73.50 81.85 84 (+34)
B3+DCW 68.30 76.95 73.65 82.25 73.70 82.10 80.40 86.65 55 (+ 5)
B3+DCW+SCW 74.70 82.75 79.50 86.50 79.25 85.90 83.80 89.55 85 (+35)

Table 5. Image retrieval performance on the Mobile dataset using different vocabulary trees.

Datasets UKbench Holidays Mobile
Metrics N-S mAP(%) tr (ms) mAP(%) τ1 (%)
ImageNet-T B3 Proposed B3 Proposed B3 Proposed B3 Proposed B3 Proposed

0 3.38 3.56 (+0.18) 87.76 91.70 (+3.94) 54 80 (+ 26) 71.71 78.05 (+ 6.3) 68.80 83.80 (+15.0)
120K 3.08 3.42 (+0.34) 80.32 88.28 (+7.96) 87 115 (+ 28) 53.57 65.33 (+11.7) 58.60 78.95 (+20.3)
265K 3.04 3.40 (+0.36) 79.40 87.79 (+8.39) 115 152 (+ 37) 51.30 63.67 (+12.3) 57.05 77.80 (+20.8)
590K 2.96 3.34 (+0.38) 76.88 86.24 (+9.36) 175 276 (+101) 46.55 59.08 (+12.4) 52.75 75.55 (+22.8)
1.26M 2.89 3.30 (+0.41) 75.17 85.17 (+10.0) 311 676 (+365) 43.87 56.32 (+12.5) 51.30 74.45 (+23.1)

Table 6. Comparison of large-scale retrieval performance of B3+DCW+SCW (Proposed) against B3 with increasing numbers of distractors.

Figure 6. Sample failures in the Mobile datasets. The first image
in each row is the query (in blue boxes) followed by the top-5
retrieved images (in green boxes), and the ground truth images are
surrounded by red boxes.

all the images in this paper are publicly available, which can
serve as a common benchmark for further large-scale image
retrieval studies.
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