
Movie/Script: Alignment and Parsing
of Video and Text Transcription

Timothee Cour, Chris Jordan, Eleni Miltsakaki, Ben Taskar

University of Pennsylvania, Philadelphia, PA 19104, USA,
{timothee,wjc,elenimi,taskar}@seas.upenn.edu

Abstract. Movies and TV are a rich source of diverse and complex video of peo-
ple, objects, actions and locales “in the wild”. Harvesting automatically labeled
sequences of actions from video would enable creation of large-scale and highly-
varied datasets. To enable such collection, we focus on the task of recovering
scene structure in movies and TV series for object tracking and action retrieval.
We present a weakly supervised algorithm that uses the screenplay and closed
captions to parse a movie into a hierarchy of shots and scenes. Scene boundaries
in the movie are aligned with screenplay scene labels and shots are reordered
into a sequence of long continuous tracks or threads which allow for more ac-
curate tracking of people, actions and objects. Scene segmentation, alignment,
and shot threading are formulated as inference in a unified generative model and
a novel hierarchical dynamic programming algorithm that can handle alignment
and jump-limited reorderings in linear time is presented. We present quantitative
and qualitative results on movie alignment and parsing, and use the recovered
structure to improve character naming and retrieval of common actions in several
episodes of popular TV series.

1 Introduction

Hand-labeling images of people and objects is a laborious task that is difficult to scale
up. Several recent papers [1, 2] have successfully collected very large-scale, diverse
datasets of faces “in the wild” using weakly supervised techniques. These datasets con-
tain a wide variation in subject, pose, lighting, expression, and occlusions which is
not matched by any previous hand-built dataset. Labeling and segmenting actions is
perhaps an even more painstaking endeavor, where curated datasets are more limited.
Automatically extracting large collections of actions is of paramount importance. In
this paper, we argue that using movies and TV shows precisely aligned with easily ob-
tainable screenplays can pave a way to building such large-scale collections. Figure
1 illustrates this goal, showing the top 6 retrieved video snippets for 2 actions (walk,
turn) in TV series LOST using our system. The screenplay is parsed into a temporally
aligned sequence of action frames (subject verb object), and matched to detected and
named characters in the video sequence. Simultaneous work[3] explores similar goals
in a more supervised fashion. In order to enable accurately localized action retrieval,
we propose a much deeper analysis of the structure and syntax of both movies and
transcriptions.



2 Timothee Cour, Chris Jordan, Eleni Miltsakaki and Ben Taskar

Fig. 1. Action retrieval using alignment between video and parsed screenplay. For each action
verb (top: walk, bottom: turn), we display the top 6 retrieved video snippets in TV series LOST us-
ing our system. The screenplay and closed captions are parsed into a temporally aligned sequence
of verb frames (subject-verb-object), and then matched to detected and named characters in the
video sequence. The third retrieval, second row (“Jack turns”) is counted as an error, since the face
shows Boone instead of Jack. Additional results appear under www.seas.upenn.edu/˜timothee.

Movies, TV series, news clips, and nowadays plentiful amateur videos, are designed
to effectively communicate events and stories. A visual narrative is conveyed from mul-
tiple camera angles that are carefully composed and interleaved to create seamless ac-
tion. Strong coherence cues and continuity editing rules are (typically) used to orient
the viewer, guide attention and help follow the action and geometry of the scene. Video
shots, much like words in sentences and paragraphs, must fit together to minimize per-
ceptual discontinuity across cuts and produce a meaningful scene. We attempt to un-
cover elements of the inherent structure of scenes and shots in video narratives. This
uncovered structure can be used to analyze the content of the video for tracking objects
across cuts, action retrieval, as well as enriching browsing and editing interfaces.

We present a framework for automatic parsing of a movie or video into a hierarchy
of shots and scenes and recovery of the shot interconnection structure. Our algorithm
makes use of both the input image sequence, closed captions and the screenplay of
the movie. We assume a hierarchical organization of movies into shots, threads and
scenes, where each scene is composed of a set of interlaced threads of shots with smooth
transitions of camera viewpoint inside each thread. To model the scene structure, we
propose a unified generative model for joint scene segmentation and shot threading.
We show that inference in the model to recover latent structure amounts to finding
a Hamiltonian path in the sequence of shots that maximizes the “head to tail” shot
similarity along the path, given the scene boundaries. Finding the maximum weight
Hamiltonian path (reducible to the Traveling Salesman Problem or TSP) is intractable
in general, but in our case, limited memory constraints on the paths make it tractable.
In fact we show how to jointly optimize scene boundaries and shot threading in linear
time in the number of shots using a novel hierarchical dynamic program.

We introduce textual features to inform the model with scene segmentation, via
temporal alignment with screenplay and closed captions, see figure 2. Such text data
has been used for character naming [4, 5] and is widely available, which makes our
approach applicable to a large number of movies and TV series. In order to retrieve
temporally-aligned actions, we delve deeper into resolving textual ambiguities with
pronoun resolution (determining whom or what ‘he’, ‘she’, ‘it’, etc. refer to in the
screenplay) and extraction of verb frames. By detecting and naming characters, and
resolving pronouns, we show promising results for more accurate action retrieval for
several common verbs. We present quantitative and qualitative results for scene segmen-



Movie/Script: Alignment and Parsing of Video and Text Transcription 3

tation/alignment, shot segmentation/threading, tracking and character naming across
shots and action retrieval in numerous episodes of popular TV series, and illustrate that
shot reordering provides much improved character naming.

The main contributions of the paper are: 1) novel probabilistic model and inference
procedure for shot threading and scene alignment driven by text, 2) extraction of verb
frames and pronoun resolution from screenplay, and 3) retrieval of the corresponding
actions informed by scene sctructure and character naming.

The paper is organized as follows. Section 2 proposes a hierarchical organization of
movies into shots, threads and scenes. Sections 3 and 4 introduce a generative model
for joint scene segmentation and shot threading, and a hierarchical dynamic program to
solve it as a restricted TSP variant. Section 5 addresses the textual features used in our
model. We report results in section 6 and conclude in section 7.

(a) (b)

Fig. 2. (a) Alignment between video, screenplay and closed captions; (b) Deconstruction pipeline.

2 Movie elements: shots, threads, scenes

Movies and TV series are organized in distinctive hierarchical and continuity structures
consisting of elements such as scenes, threads and shots. Detecting and recovering these
elements is needed for uninterrupted tracking of objects and people in a scene across
multiple cameras, recovering geometric relationships of objects in a scene, intelligent
video browsing, search and summarization.
Shot boundaries. The aim of shot segmentation is to segment the input frames into a
sequence of shots (single unbroken video recordings) by detecting camera viewpoint
discontinuities. A popular technique is to compute a set of localized color histograms
for each image and use a histogram distance function to detect boundaries [6, 7].

Shot threads. Scenes are often modeled as a sequence of shots represented as letters:
ABABAB represents a typical dialogue scene alternating between two camera points



4 Timothee Cour, Chris Jordan, Eleni Miltsakaki and Ben Taskar

of view A and B. More complex patterns are usually observed and in practice, the clus-
tering of the shots into letters (camera angles/poses) is not always a very well defined
problem, as smooth transitions between shots occur. Nevertheless we assume in our
case that each shot in a scene is either a novel camera viewpoint or is generated from
(similar to) a previous shot in the scene. This makes weaker assumptions about the
scene construction and doesn’t require reasoning about the number of clusters. In the
example above, the first A and B are novel viewpoints, and each subsequent A and B is
generated by the previous A or B. Figure 5 shows a more complex structure.

Scene boundaries. A scene consists of a set of consecutive semantically related shots
(coherence in action, location and group of actors is typical). The process of segmenting
a video sequence into scenes has received some attention in the video analysis litera-
ture [7]. An MCMC based clustering framework is used in [8]. Hierarchical cluster-
ing on a shot connectivity graph is proposed in [9]. In [10], the authors detect scene
boundaries as local minima of a backward shot coherence measure. As opposed to
shot boundaries, which correspond to strong visual discontinuity in consecutive frames,
scene boundaries are not detectable from purely local cues: the entire sequence of pre-
ceding and following shots must be considered. For example, ABCBABDEFEABD
shot sequence is one scene, while ABCBAB DEFEDEF can be two.

3 A (simple) generative model of movies

To capture the hierarchical and continuity structure, we propose a simple generative
model, where scenes are constructed independently of other scenes, while shots within
a scene are produced via an interleaved Markov (first order) structure.

We begin with some notation to define our model, assuming the video sequence has
already be segmented into shots:

– si: ith shot (interval of frames), with i ∈ [1, n]
– bj : jth scene boundary (index of its last shot), with j ≤ m; 1 ≤ b1 < ... < bm = n
– pj [i]: parent generating shot i in scene j (could be NULL), with j ≤ m, i ≤ n.

We assume the shots in a video sequence are generated as follows: first generate the
sequence of scene boundaries (bj), then generate for each scene j a dependency struc-
ture pj defining a Markov chain on shots, and finally generate each shot i given its
parent pj [i]. The model is conditioned uponm and n, assumed to be known in advance.
This can be represented using the generative model in figure 3. For the scene bound-
ary model P (b), we investigate both a uniform model and an improved model, where
scene boundaries are informed by the screenplay (see section 5). The shot threading
model P (p|b) is uniformly distributed over valid Markov chains (shot orderings) on
each scene. The shot appearance model P (si|spj [i]) is treated next (we set it to uni-
form for the root of scene j where pj [i] = NULL). This model encourages (1) smooth
shot transitions within a scene and (2) scene breaks between shots with low similarity,
since the model doesn’t penalize transitions across scenes.
Shot appearance model (P (si′ |si)). In order to obtain smooth transitions and al-
low tracking of objects throughout reordered shots, we require that P (si′ |si) depends



Movie/Script: Alignment and Parsing of Video and Text Transcription 5

Fig. 3. Graphical model for joint scene segmentation and shot reordering, see text for details.

on the similarity between the last frame of shot si (I = slast
i ) and the first frame of

shot si′ (I ′ = sfirst
i′ ). Treating each shot as a word in a finite set, we parameterize the

shot similarity term as P (si′ |si) = exp(−dshot(si, si′))/
∑
i′′ exp(−dshot(si, si′′))

where dshot(si, si′) = dframe(I, I ′) is the chi-squared distance in color histogram be-
tween frames I, I ′. Note, dshot(si, si′) is not symmetric, even though dframe(I, I ′) is.

4 Inference in the model

In this section we attempt to solve the MAP problem in figure 3. Let us first consider
the simplified case without scene transitions (when m = 1). In this case, maximizing
the log becomes:

max
p:Markov Chain

∑
i

Wi,p[i] = max
π∈P[1,n]

∑
t

Wπt−1,πt
(1)

where Wii′ = logP (si′ |si) and π ∈ P[1,n] denotes a permutation of [1, n] defined
recursively from the parent variable p as follows: p[πt] = πt−1, with π1 indicating
the root. This amounts to finding a maximum weight Hamiltonian Path or Traveling
Salesman Problem (TSP), with πt indicating which shot is visited at time t on a virtual
tour. TSPs are intractable in general, so we make one additional assumption restricting
the set of feasible permutations.

4.1 Memory-limited TSPs

Given an integer k > 0 (memory width), and an initial ordering of shots (or cities by
analogy to TSP) 1, ..., n, we introduce the following limited memory constraint on our
hamiltonian path π = (πt):

Pk[1,n] = {π ∈ P[1,n] : ∀(i, i′)i′ ≥ i+ k ⇒ πi′ > πi} (2)

This is illustrated in figure 4 for k = 2 (k = 1 means π is the identity, and k = n
is fully unconstrained). There are two important consequences: (1) the MAP becomes
tractable (linear complexity in n), and (2) the problem becomes sparse, i.e., we can
restrict W.L.O.G. W to be sparse (banded):

πt ∈ [t− (k − 1), t+ (k − 1)] (3)
Wii′ = −∞ except for i− (2k − 3) ≤ i′ ≤ i+ 2k − 1 (4)



6 Timothee Cour, Chris Jordan, Eleni Miltsakaki and Ben Taskar

The first line comes from the pigeonhole principle, and the second one uses the first line:
−(2k − 3) ≤ πt+1 − πt ≤ 2k − 1. Note, this constraint is natural in a video sequence,
as video editing takes into account the limited memory span of humans consisting of a
few consecutive shots.

Fig. 4. Top: a feasible solution for the restricted TSP with k = 2. Bottom: an infeasible solution,
violating the precedence constraint (shaded cities). Middle: the constraint limits the range of the
permutation: πt ∈ [t− (k− 1), t+ (k− 1)]. Right: the constraint implies a banded structure on
the similarity matrix W = (Wii′): i− (2k − 3) ≤ i′ ≤ i+ 2k − 1.

4.2 Dynamic Programming solution without scene breaks (P (p, s))

The solution to the simplified problem without scene breaks (1) under constraint (2)
has been addressed in [11] (it dealt with a hamiltonian cycle with π1(1) = 1, but this
is easily adaptable to our case). We summarize the main points below. Let Ct(S, i′) be
the optimal cost of the paths π ∈ Pk[1,n] satisfying πt = i′ and {π1, ..., πt−1} = S (set
of cities visited before time t). The dynamic programming solution uses the relation:

Ct(S, i′) = min
i∈S

Ct−1(S − {i}, i) +Wii′ (5)

Because of the precedence constraint, the pair (S, i′) can take at most (k+1)2k−2 pos-
sible values at any given time t (instead of

(
n−1
t−1

)
n without the constraint). The idea

is to construct a directed weighted graph Gkn with n layers of nodes, one layer per
position in the path, with paths in the graph joining layer 1 to layer n corresponding
to feasible hamiltonian paths, and shortest paths joining layer 1 to n corresponding to
optimal hamiltonian paths. Since there are at most k incoming edges per node (corre-
sponding to valid transitions πt−1 → πt), the total complexity of the dynamic program
is O(k(k + 1)2k−2 · n), exponential in k (fixed) but linear in n, see [11] for details.



Movie/Script: Alignment and Parsing of Video and Text Transcription 7

4.3 Dynamic Programming solution with scene breaks (P (b, p, s))

The general problem can be rewritten as:

max
b

∑
j

max
π∈Pk

(bj−1,bj ]

∑
t

Wπt−1,πt
(6)

Naive solution. One can solve (6) as follows: for each interval I ⊂ [1, n], pre-compute
the optimal path π∗I ∈ PkI using 4, and then use a straightforward dynamic program-
ming algorithm to compute the optimal concatenation of m such paths to form the
optimal solution. Letting f(k) = k(k + 1)2k−2, the complexity of this algorithm is
O(
∑

1≤i≤i′≤n f(k) · (i′− i+1)) = O(f(k)n(n+1)(n+2)/6) for the precomputation
andO(mn(n+1)/2) for the dynamic program, which totals toO(f(k)n3/6). The next
paragraph introduces our joint dynamic programming over scene segmentation and shot
threading, which reduces computational complexity by a factor n (number of shots).
Joint dynamic program over scene breaks and shot threading. We exploit the pres-
ence of overlapping subproblems. We construct a single tour π, walking over the joint
space of shots and scene labels. Our approach is based on the (categorical) product
graph Gkn×Cm where Gkn is the graph from 4.2 and Cm is the chain graph of order m.

A node (u, j) ∈ Gkn × Cm represents the node u ∈ Gkn in the jth scene. Given
two connected nodes u = (S, i, t) and u′ = (S′, i′, t + 1) in Gkn, there are two types
of connections in the product graph. The first connections correspond to shots i, i′ both
being in the jth scene:

(u, j)→ (u′, j), with weight Wii′ (7)

The second connections correspond to a scene transition:

(u, j)→ (u′, j + 1), with weight 0, (8)

and only happen when u = (S, i, t) satisfies max(i,max(S)) = t, to make sure the
tour decomposes into a tour of each scene (we can switch to the next scene when the
set of shots visited up to time t is exactly {1, ..., t}).

The solution to (6) similarly uses a dynamic program to find the shortest path in
Gkn × Cm (and backtracking to recover the arg max). Since there are m times as many
nodes in the graph as in Gkn and at most twice as many incoming connections per
node (nodes from the previous scene or from the same scene), the total complexity
is: O(2k(k + 1)2k−2mn) = O(2f(k)mn).
Comparison. We manually labeled shot and scene breaks for a number of movies
and TV series and found that a typical scene contains on average about 11 shots,
i.e.m ≈ n/11. So the reduction in complexity between the naive algorithm and our
joint dynamic program is: O( f(k)n3/6

2f(k)mn ) = O(n2/(12m)) ≈ n, which is a huge gain,
especially given typical values of n = 600. The resulting complexity is linear in n and
m and in practice takes about 1 minute as opposed to 11 hours for an entire episode,
given pre-computed shot similarity.



8 Timothee Cour, Chris Jordan, Eleni Miltsakaki and Ben Taskar

Fig. 5. Shot reordering to recover continuity in 3 scenes of LOST.

5 Scene segmentation via coarse image to text alignment (P (b))

We now assume we have some text data corresponding to the movie sequence, and
we focus on simultaneously segmenting/threading the video into scenes and aligning
the text with the video. The extra text media removes a lot of ambiguity for the scene
segmentation and, combined with our model, leads to improved scene segmentation
results as we shall see in section (6).

5.1 Text data: screenplay and closed captions

We use two sources of text for our segmentation-alignment problem: the screenplay,
which narrates the actions and provides a transcript of the dialogues, and the closed
captions, which provide time-stamped dialogues, as in figure 2(a). Both sources are
essential since the screenplay reveals speaker identity, dialogues and scene transitions
but no time-stamps, and closed captions reveal dialogues with time-stamps but nothing
else. The screenplay and the closed captions are readily available for a majority of
movies and TV series produced in the US. A similar approach was used in [5] to align
faces with character names, with 2 differences: 1) they used the screenplay to reveal the
speaker identity as opposed to scene transitions, and 2) subtitles were used instead of
closed captions. Subtitles are encoded as bitmaps, thus require additional steps of OCR
and spell-checking to convert them to text[5], whereas closed captions are encoded as
ASCII text in DVDs, making our approach simpler and more reliable, requiring a simple
modification of mplayer (http://www.mplayerhq.hu/).

5.2 Screenplay/closed captions alignment

The alignment between the screenplay and the closed captions is non-trivial since the
closed captions only contain the dialogues (without speaker) mentioned in the screen-
play, often with wide discrepancies between both versions. We extend the dynamic
time warping[12] approach in a straightforward way to time-stamp each element of the
screenplay (as opposed to just the dialogues as in [5]). The screenplay is first parsed into
a sequence of elements (either NARRATION, DIALOGUE, or SCENE-TRANSITION)



Movie/Script: Alignment and Parsing of Video and Text Transcription 9

using a simple grammar, and the dynamic programming alignment of the words in the
screenplay and the closed captions provides a time interval [T start(i), T end(i)] for each
DIALOGUE element Ei. A NARRATION or SCENE-TRANSITION element Ej en-
closed between two DIALOGUE elements Ei1 , Ei2 is assigned the following conser-
vative time interval: [T start(i1), T end(i2)].

5.3 Scene segmentation via alignment

We determine the scene boundary term P (b) from section 3 by aligning each SCENE-
TRANSITION element mentioned in the screenplay to a scene start. P (b) is uniform
among the set of b satisfying the temporal alignment constraints:

1 ≤ b1 < ... < bm = n (9)
tstart(j) ≤ bj−1 + 1 ≤ tend(j) (10)

where [tstart(j), [tend(j)] is the time interval of the jth SCENE-TRANSITION element,
converted into frame numbers, then to shot indexes.
Additional alignment constraints. Close inspection of a large number of screenplays
collected for movies and TV series revealed a fairly regular vocabulary used to describe
shots and scenes. One such example is FADE IN and FADE OUT corresponding to a
transition between a black shot (where each frame is totally black) and a normal shot,
and vice versa. Such black shots are easy to detect, leading to additional constraints in
the alignment problem, and a performance boost.

5.4 Pronoun resolution and verb frames

Alignment of the screenplay to dialog in closed captions and scene boundaries in the
video helps to narrow down the scope of reference for other parts of the screenplay
that are interspersed – the narration or scene descriptions, which contain mentions of
actions and objects on the screen. In addition to temporal scope uncertainty for these de-
scriptions, there is also ambiguity with respect to the subject of the verb, since personal
pronouns (he, she) are commonly used. In fact, our analysis of common screenplays re-
veals there are more pronouns than occurences of character names in the narrations, and
so resolving those pronouns is an important task. We employed a simple, deterministic
scheme for pronoun resolution that uses a standard probabilistic context-free parser to
analyze sentences and determine verb frames (subject-verb-object) and then scans the
sentence for possible antecedents of each pronoun that agree in number and gender, see
figure 6. The details of the algorithm are given in supplemental materials. Here is an ex-
ample output of our implementation on a sentence extracted from screenplay narration
(pronoun resolution shown in parenthesis): On the side, Sun watches them. Jin reaches
out and touches Sun ’s chin, his (Jin’s) thumb brushes her (Sun’s) lips. She (Sun) looks
at him (Jin) and pulls away a little. He (Jin) puts his (Jin’s) hand down.
Output verb frames: (Sun - watches - something) (Jin - reaches out - ) (Jin - touches -
chin) (Sun - looks - at Jin) . (Sun - pulls away - ) (Jin - puts down - hand).
We report pronoun resolution accuracy on screenplay narrations of 3 different TV series
(about half a screenplay for each), see table 1.



10 Timothee Cour, Chris Jordan, Eleni Miltsakaki and Ben Taskar

total verbs 25,000
distinct verbs 1,000

looks (most common) 2,000
turns 1,100
walks 800
takes 550

climbs 40
kisses 40

total dialogue lines 16,000
distinct speaker names 190
Jack (most common) 2,100

Fig. 6. Left: pronoun resolution and verb frames obtained from the parsed screenplay narrations.
Right: statistics collected from 24 parsed screenplays (1 season of LOST).

TV series screenplay pronoun resolution accuracy # pronouns # sentences
LOST 75% 93 100
CSI 76 % 118 250

ALIAS 78% 178 250

Table 1. Pronoun resolution accuracy on screenplay narrations of 3 different TV series.

6 Results

We experimented with our framework on a significant amount of data, composed of
TV series (19 episodes from one season of LOST, several episodes of CSI), one fea-
ture length movie “The Fifth Element”, and one animation movie “Aladdin”, represent-
ing about 20 hours of video at DVD resolution. We report results on scene segmenta-
tion/alignment, character naming and tracking, as well as retrieval of query action verbs.

Shot segmentation. We obtain 97% F-score (harmonic mean of precision and recall)
for shot segmentation, using standard color histogram based methods.
Scene segmentation and alignment. We hand labeled scene boundaries in one episode
of LOST and one episode of CSI based on manual alignment of the frames with the
screenplay. The accuracy for predicting the scene label of each shot was 97% for LOST
and 91% for CSI. The F-score for scene boundary detection was 86% for LOST and
75% for CSI, see figure 7. We used k = 9 for the memory width, a value similar to the
buffer size used in [10] for computing shot coherence. We also analyzed the effect on
performance of the memory width k, and report results with and without alignment to
screenplay in table 2. In comparison, we obtained an F-score of 43% for scene bound-
ary detection using a model based on backward shot coherence [10] uninformed by
screenplay, but optimized over buffer size and non-maximum suppression window size.
Scene content analysis. We manually labeled the scene layout in the same episodes
of LOST and CSI, providing for each shot in a scene its generating shot (including the
special case when this is a new viewpoint). We obtain a precision/recall of 75% for pre-
dicting the generating parent shot. See figure 5 for a sample of the results on 3 scenes.



Movie/Script: Alignment and Parsing of Video and Text Transcription 11

Note, to obtain longer tracks in figure 5, we recursively applied the memory limited
TSP until convergence (typically a few iterations).

Character identification on reordered shots. We illustrate a simple speaker iden-
tification based on screenplay alignment and shot threading, see figure 8. We use a
Viola-Jones[13] based face detector and tracking with normalized cross-correlation to
obtain face tracks in each shot. We build a Hiddden Markov Model (HMM) with states
corresponding to assignments of face tracks to character names. The face tracks are
ordered according to the shot threading permutation, and as a result there are much
fewer changes of character name along this ordering. Following [14], we detect on-
screen speakers as follows: 1) locate mouth for each face track using a mouth detector
based on Viola-Jones, 2) compute a mouth motion score based on the normalized cross
correlation between consecutive windows of the mouth track, averaged over temporal
segments corresponding to speech portions of the screenplay. Finally we label the face
tracks using Viterbi decoding for the Maximum a Posteriori (MAP) assignment (see
website for more details). We computed groundtruth face names for one episode of
LOST and compared our method against the following baseline that does not use shot
reordering: each unlabeled face track (without a detected speaking character on screen)
is labeled using the closest labeled face track in feature space (position of face track and
color histogram). The accuracy over an episode of LOST is 76% for mainly dialogue
scenes and 66% for the entire episode, as evaluated against groundtruth. The baseline
model based using nearest neighbor performs at resp. 43% and 39%.

Retrieval of actions in videos. We consider a query-by-action verb retrieval task for
15 query verbs across 10 episodes of LOST, see figure 9. The screenplay is parsed
into verb frames (subject-verb-object) with pronoun resolution, as discussed earlier.
Each verb frame is assigned a temporal interval based on time-stamped intervening di-
alogues and tightened with nearby shot/scene boundaries. Queries are further refined to
match the subject of the verb frame with a named character face. We report retrieval
results as follows: for each of the following action verbs, we measure the number of
times (out of 10) the retrieved video snippet correctly shows the actor on screen per-
forming the action (we penalize for wrong naming): close eyes (9/10), grab (9/10), kiss
(8/10), kneel (9/10), open (9/10), stand (9/10), cry (9/10), open door (10/10), phone
(10/10), point (10/10), shout (7/10), sit (10/10), sleep (8/10), smile (9/10), take breath
(9/10). The average is 90/100. Two additional queries are shown in figure 1 along with
the detected and identified characters. We created a large dataset of retrieved action
sequences combined with character naming for improved temporal and spatial localiza-
tion, see www.seas.upenn.edu/˜timothee for results and matlab code.

7 Conclusion

In this work we have addressed basic elements of movie structure: hierarchy of scenes
and shots and continuity of shot threads. We believe that this structure can be useful
for many intelligent movie manipulation tasks, such as semantic retrieval and indexing,



12 Timothee Cour, Chris Jordan, Eleni Miltsakaki and Ben Taskar

P (b) k = 1 k = 2 k = 3 k = 9 k = 12

aligned 73/90 77/91 82/96 86/97 88/97
uniform 25/0 45/14 55/0 52/1 -/-

total time (s) < 0.1 < 0.1 0.1 5 68

Table 2. % F-score (first number) for scene boundary detection and % accuracy (second number)
for predicting scene label of shots (on 1 episode of LOST) as a function of the memory width k
used in the TSP, and the prior P (b). The case k = 1 corresponds to no reordering at all. Line 1:
P (b) informed by screenplay; line 2: P (b) uniform; line 3: total computation time.

Fig. 7. Movie at a glance: scene segmentation-alignment and shot reordering for an episode of
LOST (only a portion shown for readability). Scene boundaries are in red, together with the set
of characters appearing in each scene, in blue.

Fig. 8. Character naming using screenplay alignment and shot threading. Top 3 rows: correctly
named faces; bottom row: incorrectly named faces. We detect face tracks in each shot and reorder
them according to the shot threading permutation. Some face tracks are assigned a name prior
based on the alignment between dialogues and mouth motion. We compute a joint assignment of
names to face tracks using an HMM on the reordered face tracks.



Movie/Script: Alignment and Parsing of Video and Text Transcription 13

Fig. 9. Top 10 retrieved video snippets for 15 query action verbs: close eyes, grab, kiss, kneel,
open, stand, cry, open door, phone, point, shout, sit, sleep, smile, take breath. Please zoom in to
see screenplay annotation (and its parsing into verb frames for the first 6 verbs).



14 Timothee Cour, Chris Jordan, Eleni Miltsakaki and Ben Taskar

browsing by character or object, re-editing and many more. We plan to extend our work
to provide more fine-grained alignment of movies and screenplay, using coarse scene
geometry, gaze and pose estimation.

References

1. Huang, G., Jain, V., Learned-Miller, E.: Unsupervised joint alignment of complex images.
In: International Conference on Computer Vision. (2007) 1–8

2. Ramanan, D., Baker, S., Kakade, S.: Leveraging archival video for building face datasets.
In: International Conference on Computer Vision. (2007) 1–8

3. Laptev, I., Marszałek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from
movies. In: IEEE Conference on Computer Vision and Pattern Recognition. (2008)

4. Sivic, J., Everingham, M., Zisserman, A.: Person spotting: video shot retrieval for face sets.
In: International Conference on Image and Video Retrieval (CIVR 2005), Singapore. (2005)

5. Everingham, M., Sivic, J., Zisserman, A.: Hello! my name is... buffy – automatic naming of
characters in tv video. In: Proceedings of the British Machine Vision Conference. (2006)

6. Lienhart, R.: Reliable transition detection in videos: A survey and practitioner’s guide. Int.
Journal of Image and Graphics (2001)

7. Ngo, C.W., Pong, T.C., Zhang, H.J.: Recent advances in content-based video analysis. In-
ternational Journal of Image and Graphics 1 (2001) 445–468

8. Zhai, Y., Shah, M.: Video scene segmentation using markov chain monte carlo. IEEE Trans-
actions on Multimedia 8 (2006) 686–697

9. Yeung, M., Yeo, B.L., Liu, B.: Segmentation of video by clustering and graph analysis.
Comp. Vision Image Understanding (1998)

10. Kender, J., Yeo, B.: Video scene segmentation via continuous video coherence. In: IEEE
Conference on Computer Vision and Pattern Recognition. (1998)

11. Balas, E., Simonetti, N.: Linear time dynamic programming algorithms for new classes of
restricted tsps: A computational study. INFORMS Journal on Computing 13 (2001) 56–75

12. Myers, C.S., Rabiner, L.R.: A comparative study of several dynamic time-warping algo-
rithms for connected word recognition. In: The Bell System Technical Journal. (1981)

13. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer
Vision 57 (2004) 137–154

14. Everingham, M., Sivic, J., Zisserman, A.: Hello! my name is buffy: Automatic naming of
characters in tv video. In: BMVC. (2006) III:899


