
WEAKLY SUPERVISED LEARNING FROM MULTIPLE
MODALITIES: EXPLOITING VIDEO, AUDIO AND TEXT

FOR VIDEO UNDERSTANDING

Timothee Cour

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2009

Ben Taskar
Supervisor of Dissertation

Rajeev Alur
Graduate Group Chairperson

COPYRIGHT

Timothee Cour

2009

Acknowledgements

I would like to acknowledge first and foremost my advisor, Ben Taskar, who represents

in my eyes what a perfect advisor should be. As his first Ph.D. student I benefited from

a lot of his guidance, his knowledge in machine learning and his inspiration for tackling

difficult problems. I am particularly grateful to him for helping me select a very interesting

thesis topic, and for his constant push for quality, original and ambitious work. Ben was

and still is a mentor for me.

I would like to thank my thesis committee, Kostas Daniilidis, Fernando Pereira, CJ

Taylor and Andrew Zisserman, for their excellent feedback, questions and suggestions

which shaped this thesis to its current form. I have found in their work a source of inspi-

ration and knowledge. The work of Andrew on character naming in video using screenplay

was particularly influential for me, as was the work of Fernando on Conditional Random

Fields. As my committee chair, Kostas gave me invaluable advice to improve my thesis,

as well as academic guidance throughout my Ph.D. I would also like to thank my written

preliminary exam committee, Ali Jadbabaie, Kostas Daniilidis and Lyle Ungar. I had the

chance to work with Eleni Miltsakaki, Michael Shilman, Paul Viola, and especially Jianbo

Shi, who taught me a lot about computer vision, how to think hard about a problem and

how to ask the right questions before proposing a solution. Jianbo has greatly influenced

my research, presentation skills, and approach to problem solving.

As a Grasp lab alumni, I have had the privilege to collaborate, work with, or inter-

act with a number of outstanding people. My special thanks go to Ben Sapp, who was

an amazing colleague. I would also like to thank Akash Nagle, Chris Jordan, Praveen

iii

Srinivasan, Florence Benezit, Nicolas Gogin, Qihui Zhu, Alex Toshev, Sandy Patterson,

Katerina Fragiadakis, Mirko Visontai and all those that I forgot to mention. Collaborators

or friends, they all contributed to making my stay at Upenn a very enjoyable one. Special

thanks to Surabhi, who helped me in some of the difficult moments.

Last but not least, I would like to express deep gratitude to my parents, Caroline and

Jean-marie, for their never-ending support throughout my studies and their help to make

difficult decisions. I would like to thank finally my brother Bijan, my sisters Marjolaine

and Philippine, for being such a united and supportive family.

iv

ABSTRACT

WEAKLY SUPERVISED LEARNING FROM MULTIPLE MODALITIES:

EXPLOITING VIDEO, AUDIO AND TEXT FOR VIDEO UNDERSTANDING

Timothee Cour

Ben Taskar

As web and personal content become ever more enriched by videos, there is increasing

need for semantic video search and indexing. A main challenge for this task is lack of

supervised data for learning models. In this dissertation we propose weakly supervised

algorithms for video content analysis, focusing on recovering video structure, retrieving

actions and identifying people. Key components of the algorithms we present are (1)

alignment between multiple modalities: video, audio and text, and (2) unified convex

formulation for learning under weak supervision from easily accessible data.

At a coarse level, we focus on the task of recovering scene structure in movies and

TV series. We present a weakly supervised algorithm that parses a movie into a hierarchy

of scenes, threads and shots. Movie scene boundaries are aligned with screenplay scenes

and shots are reordered into threads. We present a unified generative model and novel

hierarchical dynamic program inference.

At a finer level, we aim at resolving person identity in video using images, screenplay

and closed captions. We consider a partially-supervised multiclass classification setting

where each instance is labeled ambiguously with more than one label. The set of potential

labels for each face is the characters’ names mentioned in the corresponding screenplay

scene. We propose a novel convex formulation based on minimization of a surrogate loss.

We show theoretical analysis and strong empirical proof that effective learning is possible

even when all examples are ambiguously labeled.

We also investigate the challenging scenario of naming people in video without screen-

play. Our only source of (indirect) supervision are person references mentioned in di-

alog, such as “‘Hey, Jack!”. We resolve identities by learning a classifier from partial

v

label constraints, incorporating multiple-instance constraints from dialog, gender and lo-

cal grouping constraints, in a unified convex learning formulation. Grouping constraints

are provided by a novel temporal grouping model that integrates appearance, synchrony

and film-editing cues to partition faces across multiple shots. We present dynamic pro-

gramming inference and discriminative learning for this partitioning model.

We have deployed our framework on hundreds of hours of movies and TV, and present

quantitative and qualitative results for each component.

vi

Contents

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statements . 3

1.3 Contributions . 6

1.4 Thesis outline . 8

1.5 Previously published work . 11

2 From Supervised to Weakly Supervised Learning 12

2.1 Supervised Learning . 14

2.2 Basic Supervised Classification Models 17

2.2.1 Generalized Linear Family . 17

2.2.2 Support Vector Machines . 18

2.2.3 Boosting . 19

2.3 Semi-Supervised Learning . 21

2.4 Multiple instance Learning . 25

2.5 Multi-Label Learning . 27

2.6 Ambiguous Learning . 27

2.7 Unsupervised Learning . 28

vii

3 Coarse-Level Alignment of Video and Text Transcriptions 30

3.1 Introduction . 30

3.2 Movie elements: shots, threads, scenes 33

3.3 A (simple) generative model of movies 36

3.4 Inference in the model . 38

3.4.1 Memory-limited TSPs . 38

3.4.2 Dynamic Programming solution without scene breaks (P (p, s)) 39

3.4.3 Dynamic Programming solution with scene breaks (P (b, p, s)) . 40

3.5 Scene segmentation via coarse image to text alignment (P (b)) 42

3.5.1 Text data: screenplay and closed captions 42

3.5.2 Screenplay/closed captions alignment 42

3.5.3 Scene segmentation via alignment 43

3.5.4 Pronoun resolution and verb frames 43

3.6 Results . 45

3.6.1 Shot segmentation . 45

3.6.2 Scene segmentation and alignment 45

3.6.3 Scene content analysis . 46

3.6.4 Character identification on reordered shots 46

3.6.5 Retrieval of actions in videos . 47

3.7 Conclusion . 49

4 Learning from Ambiguously Labeled Images 51

4.1 Introduction . 51

4.2 Related Work . 54

4.3 Formulation . 55

4.3.1 The model and loss functions 56

4.3.2 Connection between ambiguous loss and standard 0/1 loss 57

4.3.3 Robustness to outliers . 58

4.3.4 Label-specific recall bounds . 60

viii

4.4 A convex learning formulation . 61

4.4.1 Our convex loss function for ambiguously labeled data 61

4.4.2 Comparison vs naive, multi-label approach 62

4.4.3 Asymptotic bounds on the convex relaxation 64

4.5 Algorithm and implementation details 65

4.6 Reduction of ambiguous learning to standard binary classification 66

4.6.1 Ambiguous loss with Linear or Quadratic Programming 67

4.6.2 Large scale Ambiguous learning with L2 loss linear SVM 67

4.6.3 Kernelized Ambiguous loss using Support Vector Machine 68

4.6.4 Ambiguous loss with feature selection using boosting 69

4.7 Transductive analysis . 70

5 Experiments for Learning with Ambiguously Labeled Data 74

5.1 Baselines: description and implementation details 75

5.1.1 Random model . 75

5.1.2 IBM Model 1 . 75

5.1.3 Discriminative EM model . 76

5.1.4 k-Nearest Neighbor . 77

5.1.5 Naive model . 78

5.1.6 Supervised models . 79

5.2 Variants of our approach . 79

5.3 Datasets and feature description . 80

5.3.1 UCI Datasets . 80

5.3.2 Faces in the Wild (FIW) . 80

5.3.3 Speaker Identification from Audio 81

5.4 Controlled experiments . 83

5.5 Comparative Summary . 91

ix

6 Learning with Ambiguously Labeled Faces in Videos 95

6.1 Data Collection . 95

6.2 Ambiguous Label Selection . 96

6.3 Results with the basic system . 98

6.3.1 Improved confidence measure for precision-recall evaluation . . . 100

6.3.2 Precision-recall . 101

6.4 Additional cues . 103

6.4.1 Mouth motion . 103

6.4.2 Gender constraints . 105

6.4.3 Grouping constraints . 105

6.5 Ablative analysis . 106

6.6 Qualitative results and Video demonstration 108

6.6.1 Video demonstration . 108

6.7 Conclusion . 108

7 Temporal Grouping 118

7.1 Introduction . 118

7.2 Related Work . 120

7.3 Approach . 121

7.4 How to represent a partition . 122

7.5 Partition CRF . 123

7.6 Inference . 124

7.6.1 Sequence-consistent decomposition 124

7.6.2 Dynamic Programming Solution 125

7.6.3 Cardinality-Constrained MAP 126

7.7 Learning . 127

7.7.1 Discrete loss . 127

7.7.2 A convex large-margin formulation 128

7.7.3 Optimization . 129

x

7.7.4 Hamming loss for partitioning 129

7.8 Grouping Cues . 130

7.8.1 Appearance cues . 130

7.8.2 Video editing cues . 132

7.9 Results for Temporal Grouping . 134

7.9.1 Training and testing dataset . 134

7.9.2 Baselines . 134

7.9.3 Comparison . 134

7.9.4 Ablative analysis . 135

7.9.5 Effect of partition scope . 137

7.9.6 Qualitative results . 137

8 Identity Resolution Without Screenplay 140

8.1 Introduction . 140

8.2 Related Work . 142

8.3 Label constraints for person recognition 143

8.3.1 Grouping constraints . 144

8.3.2 1st and 2nd reference constraints 145

8.3.3 Exclusion constraints . 146

8.3.4 Propagation of constraints through clustering 146

8.4 Convex formulation . 146

8.5 Features . 147

8.6 Character Naming Results . 148

8.6.1 Precision-recall evaluation . 148

8.6.2 Ablative analysis . 150

8.6.3 Analysis with combinations of perfect cues 150

8.6.4 Dialog reference classification 152

8.7 Conclusion . 152

xi

9 Conclusion and Directions for Future Work 153

9.1 Directions for future work . 154

9.1.1 Closed captions and plot summary 154

9.1.2 Character naming without closed captions 154

9.1.3 Action recognition . 155

A Image Features 156

A.1 Gender classifier . 156

B Text Features 157

B.1 Automatic Screenplay Parsing . 157

B.2 Alignment of Screenplay and Closed Captions 158

B.3 Pronoun Resolution . 158

C Miscellanous proofs 160

C.1 Linear time feature selection during boosting 160

xii

List of Tables

3.1 Pronoun resolution accuracy . 45

3.2 Scene boundary detection accuracy . 47

5.1 Summary of datasets used . 80

5.2 Summary of experiments . 85

6.1 Misclassification rates for naming in videos 103

7.1 Bell number . 123

7.2 Grouping cues with a scene, see text for details. 133

8.1 Constraints for naming . 148

xiii

List of Figures

1.1 Who, what, where . 2

1.2 Part detection and naming . 3

1.3 Deconstruction pipeline. 4

1.4 Ambiguous naming in videos . 5

1.5 identity resolution without screenplay 5

1.6 Action retrieval examples . 6

1.7 Summary of chapters . 6

2.1 A supervised task: character naming . 12

2.2 Diagram of different learning scenarios 13

2.3 Standard binary loss functions . 17

3.1 Action retrieval examples . 32

3.2 Deconstruction pipeline . 34

3.3 Alignment between video, screenplay and closed captions 35

3.4 Graphical model for joint scene segmentation and shot reordering 37

3.5 Restricted TSP . 39

3.6 Shot reordering . 41

3.7 Statistics on pronoun resolution and verb frames 44

3.8 Movie at a glance . 48

3.9 Character naming using screenplay alignment and shot threading 48

3.10 Action retrieval examples . 50

xiv

4.1 Weak supervision from photograph collections 52

4.2 Ambiguous naming in videos . 53

4.3 Co-occurrence graph for common characters 54

4.4 Ambiguous loss . 64

4.5 Plot of ambiguous learning loss function 65

5.1 Examples from Faces in the Wild dataset 81

5.2 Forced alignment error rate . 83

5.3 Comparison on FIW(10b) . 85

5.4 Comparison on audio from Lost . 86

5.5 Comparison on ecoli . 86

5.6 Comparison on dermatology . 87

5.7 Comparison on abalone . 87

5.8 Using 10 labels (unbalanced) . 88

5.9 Using 100 labels (unbalanced) . 88

5.10 Using transductive learning . 89

5.11 Effect of # of ambiguous bags . 89

5.12 Effect of ambiguity degree. 90

5.13 Effect of ambiguity degree (with transductive learning) 90

5.14 Effect of dimensionality . 91

5.15 Experiments with a boosting version of the ambiguous learning 92

5.16 Variations on our loss function . 93

6.1 Full frame predictions . 96

6.2 Face pipeline . 97

6.3 Confusion matrix for naming . 99

6.4 precision-recall . 102

6.5 precision-recall . 107

6.6 Claire . 109

xv

6.7 Locke . 110

6.8 Boone . 111

6.9 Kate . 112

6.10 Catherine . 113

6.11 Sara . 114

6.12 Greg . 115

6.13 Nick . 116

6.14 Groundtruth examples of characters . 117

7.1 temporal grouping setup . 119

7.2 partition representation . 123

7.3 Consistency between consecutive partitions 125

7.4 Appearance cues . 131

7.5 appearance and film structure cues . 133

7.6 Purity of clustering . 135

7.7 Temporal grouping results . 136

7.8 Mismatches vs number of clusters . 137

7.9 Grouping results image sequence . 138

7.10 Original image sequence . 139

8.1 Identity resolution without screenplay 141

8.2 Dialog cues for naming . 141

8.3 Dialogue references provide multiple instance constraints 145

8.4 Naming results . 149

8.5 Naming results swapping in perfect components 151

9.1 Ambiguous constraint vs multiple instance constraint 154

xvi

Chapter 1

Introduction

With the ever increasing number of videos available on the web and personal collections,

there is a growing need for content-based retrieval, semantic indexing and smart browsing

devices. Current video indexing solutions still rely on text annotations, which are often

sparse and incomplete. While there is active research on the topic of video understanding,

a key challenge is the lack of supervision for training predictive models. In this dissertation

we propose weakly supervised algorithms for video content analysis, specifically focusing

on identifying people and retrieving actions, see figure 1.1. A key component of the

learning algorithms we present is alignment and interaction between multiple modalities:

video, audio and text. In contrast to previous work, we do not use any annotation or

supervision other than readily available data accompanying the video.

1.1 Motivation

One important motivation for studying videos instead of image datasets is that there is

much interesting structure in videos to be revealed that can be helpful for understanding

its content. If a picture is worth a thousand words, than certainly a video can reveal a lot

more. Besides the addition of a third dimension that can be used for tracking, videos are

usually associated with an audio stream, as well as text in the form of closed captions,

1

Who? What? Where?

Figure 1.1: Basic tasks for video understanding include: (1) who is in the picture, (2) what
are they doing, (3) where is the scene taking place, as well as other questions such as when
is the action happening, what are the objects, etc. In this thesis we attempt to answer some
of these questions in a weakly supervised manner with the help of easily accessible data:
video, audio, screenplay and closed captions.

subtitles or screenplay. Understanding the interaction between the visual, audio, and text

modalities provides independent verifications for understanding the underlying action. For

example, in [Everingham et al., 2006] the authors exploit the synchronous motion of the

mouth with speech utterances to localize and name actors in TV series. In this thesis we

will identify and exploit many other cross-modality features in video.

A second motivation for this thesis is to use videos as a virtually infinite source of

weakly labeled data. We have collected, decompiled and automatically parsed a dataset of

over 200 TV series and movies, and extracted audio files corresponding to 1,000 different

speakers annotated with speaker name and text. We have assembled a dataset of 10 million

registered faces (the largest we know of at this time) and automatically assigned names

to a large number of those. See figure 1.2 for a sample of faces classified by our weakly

supervised algorithm using video and screenplay in TV serie LOST. We have gathered

and automatically parsed over 2000 screenplays and subtitle files and demonstrated their

use for retrieving a wide diversity of actions in video, see figure 1.6 for an example. Such

data, when correctly aligned, provides invaluable help for various supervised task such as

gender recognition from speech or face, or to bootstrap non-frontal face detectors or detect

actions “in the wild”. We argue that large quantities of cheaply available, weakly labeled

2

Figure 1.2: Examples of registered faces and named characters using our weakly super-
vised algorithm from chapters 4-6.

data can compensate the lack of manually annotated groundtruth.

Finally, a third motivation for this thesis is to use videos as a realistic testbed to develop

and evaluate algorithms in interesting learning scenarios, such as: ambiguously labeled

images, multiple instance learning, learning from multiple modalities, and inference and

learning with rich, semi-local constraints.

1.2 Problem Statements

We analyze videos at multiple granularities. At a coarse level, we focus on recovering

scene structure in movies and TV series for object tracking and action retrieval. We

present a weakly supervised algorithm that uses the screenplay and closed captions to

parse a movie into a hierarchy of scenes, threads and shots, as illustrated in figure 1.3.

Scene boundaries in the movie are aligned with screenplay scene labels and shots are re-

ordered into a sequence of long continuous threads which allow for more accurate track-

ing of people, actions and objects. Scene segmentation, alignment, and shot threading are

formulated as inference in a unified generative model, and we present a novel hierarchical

dynamic programming algorithm that can handle alignment and jump-limited reorderings.

At a finer level, we tackle the problem of resolving person identity in video using

images, screenplay and closed captions. To this end we consider a partially-supervised

multiclass classification setting where each instance is labeled ambiguously with more

than one label. In our setting, the set of potential labels for each face is the characters’

3

Figure 1.3: Deconstruction pipeline.

names mentioned in the screenplay in the corresponding scene, see figure 1.4. Another

typical example arises in photograph collections containing several faces per image and

a caption that only specifies who is in the picture but not which name matches which

face. We propose a novel convex optimization formulation based on minimization of a

surrogate loss appropriate for the ambiguous label setting. We show theoretical analysis

and strong empirical proof that effective learning is possible under reasonable assumptions

even when all examples are ambiguously labeled.

We also investigate the much more difficult scenario where no screenplay is available,

see figure 8.1. We address the identity resolution problem in that case: assigning a name

to each encountered face. Our only source of ’supervision’ are the naturally occurring

linguistic cues: first, second and third person references (such as “I’m Jack”, “Hey, Jack”

and “Jack left”). While this kind of supervision is sparse and indirect, we exploit multiple

modalities and their interactions (face appearance, voice characteristics, mouth movement

and speech synchrony, video-editing cues) to effectively resolve identities globally. We

propose a novel sequence partitioning model that groups faces and utterances (denoted

4

Figure 1.4: We use the aligned screenplay to generate a set of potential labels for each
face. Our ambiguous learning algorithm correctly recovers their identity.

as units) while respecting local constraints. In this model, states represent partitions of

the k most recent units (such as ABAB, representing a bipartition of units A and B), and

transitions represent compatibility of such partitions. We present an efficient dynamic

program for inference and a large margin parameter estimation method. The resulting

clusters of faces are subsequently assigned a name by learning a classifier from partial

label constraints. The weakly supervised classifier incorporates multiple-instance-type

constraints from dialog cues as well as local grouping constraints.

Figure 1.5: We present a new, challenging, problem: identity resolution in video in the
absence of screenplay. When screenplay is not available, we know what is being said but
not who said it. The only source of name information is from dialog cues: first, second
and third person references.

5

Figure 1.6: Action retrieval for “phone” using alignment between video and screenplay.

chapter Input Output Supervision
3 video, closed captions, screenplay coarse alignment weak
5 image,audio classification ambiguous
6 video, closed captions, screenplay naming ambiguous
8 video, closed captions naming multiple-instance
7 video clustering unsupervised

Figure 1.7: Summary of chapters: input-output relations, and type of supervision

We have deployed our framework on hundreds of hours of video from movies and TV.

We present quantitative and qualitative results for the different components of our system,

including movie alignment and parsing, character naming and retrieval of actions.

1.3 Contributions

We make several contributions in this thesis.

• We show how screenplays can be used to recover the detailed structure of movies

and demonstrate the use of the aligned screenplay for action retrieval and character

naming applications

• We propose an effective convex optimization algorithm for the ambiguous learning

6

scenario, and show that accurate learning is generally possible even when all exam-

ples are ambiguously labeled. We show our proposed convex formulation gives a

tighter approximation to the discrete ambiguous loss, compared to a related naive

approach. We provide extensive theoretical analysis connecting the true loss with

the ambiguous loss, including transductive disambiguation bounds. We show how

those bounds are affected by the degree of ambiguity of the underlying distribution,

and provide label specific recall bounds to distinguish hard to disambiguate classes

from easier ones. We analyze the finite sample case, providing concrete bounds on

the disambiguation error rate. We propose several flavors of our ambiguous learn-

ing method, based on Linear Programming, Support Vector Machines, Boosting, as

well as a Kernelized variant.

• We validate our ambiguous learning method with extensive controlled experimen-

tation, including image, audio, and standard machine learning datasets. We also

present state of the art results on automatic character naming in TV video, using

a screenplay as weak supervision. We introduce novel cues targeted for the am-

biguous label setting and achieve 6% error rate (resp. 13%) for character naming,

across 16 episodes of Lost and 8 characters (resp. 32 characters). We consider the

setting where the ambiguous label set contains occasional errors, ommitting the true

label (due to aggressive pruning heuristics for example). To this end we propose an

improved, hybrid confidence measure to boost precision recall curves.

• We consider the unsupervised setting where no screenplay or closed captions are

available. We address the problem of learning how to cluster faces, and present a

novel temporal grouping model that groups faces across an episode based on arbi-

trary local constraints, such as appearance, gender constraints, shot alternation and

other local film structure cues. We present a novel dynamic programming inference

and discriminative large margin learning for the model, which operates on local

partitions of the data. We evaluate on several hours of TV and movies, achieving

7

significantly higher accuracy than several strong baselines.

• Finally we present a new, challenging, problem: identity resolution in video with

closed captions but no screenplay. We learn a classifier from partial label con-

straints, with a convex formulation that incorporates constraints from multiple

modalities including dialog cues for naming, grouping cues, and gender cues. The

weakly supervised classifier incorporates multiple-instance-type constraints from

dialog cues, as well as exclusion constraints from gender and must-link constraints

from local grouping. We present the first quantitative results on dialog supervised

naming in TV, achieving 42% accuracy across all 55 labels, computed over the 10

most frequent characters in 8 episodes of Lost.

• Along the way, we also create large datasets of faces, annotated speech samples,

parsed and aligned screenplays and closed captions, and localized action snippets.

As sub-components of our system we also design classifiers for a number of basic

tasks, such as efficient part localization, face tracking, face gender classification,

audio gender classification, pronoun resolution, first, second and third reference

classification to name a few.

1.4 Thesis outline

We refer the reader to table 1.7 for a summary of input-output relations and type of super-

vision considered in each chapter. The rest of the thesis can be summarized as follows:

• Chapter 2. From Supervised to Weakly Supervised Learning: We start with an

overview of different basic learning scenarios, from supervised learning to weakly

supervised learning. This will help putting our contributions in perspective.

• Chapter 3. Coarse-Level Alignment of Video and Text Transcriptions: We fo-

cus on the task of recovering scene structure in movies and TV series for object

tracking and action retrieval. We present a weakly supervised algorithm that uses

8

the screenplay and closed captions to parse a movie into a hierarchy of shots and

scenes. Scene boundaries in the movie are aligned with screenplay scene labels and

shots are reordered into a sequence of long continuous tracks or threads which al-

low for more accurate tracking of people, actions and objects. Scene segmentation,

alignment, and shot threading are formulated as inference in a unified generative

model and a novel hierarchical dynamic programming algorithm that can handle

alignment and jump-limited reorderings in linear time is presented. We present

quantitative and qualitative results on movie alignment and parsing, and use the re-

covered structure to improve character naming and retrieval of common actions in

several episodes of popular TV series.

• Chapter 4. Learning from Ambiguously Labeled Images: we consider a

partially-supervised multiclass classification setting where each instance is labeled

ambiguously with more than one label. A typical example arises in photograph col-

lections containing several faces per image and a caption that only specifies who is

in the picture but not which name matches which face. We propose a general con-

vex optimization algorithm based on minimization of a surrogate loss appropriate

for the ambiguous label setting. We show theoretically and empirically that effective

learning is possible under reasonable assumptions even when all the data is weakly

labeled.

• Chapter 5 . Experiments for Learning with Ambiguously Labeled Data: We

apply our framework to identifying faces culled from web news sources, as well

as speaker recognition from audio and classification in standard machine learning

datasets. We provide extensive experimental results comparing our proposed ap-

proach with 7 baselines.

• Chapter 6. Learning with Ambiguously Labeled Faces in Videos: We focus on

9

the task of automatic character naming in TV video, using a screenplay as weak su-

pervision. We show how to design ambiguous labels from coarse screenplay align-

ment, and apply our method which we compare to several baselines. We also intro-

duce novel cues targeted for the ambiguous label setting, and perform an ablative

analysis of performance. We experiment on a very large dataset consisting of 100

hours of video, and in particular achieve 13% error for character naming across 32

labels on 16 episodes of Lost.

• Chapter 7. Temporal Grouping: We propose a novel temporal grouping model

that partitions face tracks across multiple shots while respecting appearance, geo-

metric and film-editing cues and constraints. In this model, states represent par-

titions of the k most recent face tracks, and transitions represent compatibility of

consecutive partitions. We present dynamic programming inference and discrim-

inative learning for the model. We evaluate on several hours of TV and movies,

achieving significantly higher accuracy than several strong baselines. We perform

ablative analysis.

• Chapter 8. Identity Resolution Without Screenplay: We present a new, challeng-

ing, problem: identity resolution in video with closed captions but no screenplay.

In this chapter, our only source of ‘supervision’ are the dialog cues: first, second

and third person references (such as “I’m Jack”, “Hey, Jack!” and “Jack left”).

While this kind of supervision is sparse and indirect, we exploit multiple modalities

and their interactions (appearance, dialog, mouth movement, synchrony, continuity-

editing cues) to effectively resolve identities with weakly supervised recognition.

We build upon the previous chapter, and cluster the face tracks with local temporal

grouping cues. The resulting clusters of faces are subsequently assigned a name by

learning a classifier from partial label constraints. The weakly supervised classifier

incorporates multiple-instance-type constraints from dialog cues as well as local

grouping constraints . We perform ablative analysis as well as consider the cases

10

where certain cues are perfect.

• Chapter 9. Conclusion and Directions for Future Work: We review the main

contributions presented in this dissertation, and present the applicability and limita-

tions of the methods presented. We discuss future work we plan to work on.

1.5 Previously published work

Some of the material presented in this dissertation has been published in conference pro-

ceedings. The coarse-level alignment of video and text presented in chapter 3 is based on

[Cour et al., 2008]. Chapters 4, 5 and 6 extend the original framework and experiments

presented in [Cour et al., 2009a]. Finally, chapters 7 and 8 describe and extend the re-

sults presented in paper currently under review, [Cour et al., 2009b]. Additional previous

work [Cour and Shi, 2007b, Cour and Shi, 2007a, Cour et al., 2005a, Cour et al., 2005b,

Cour et al., 2007] is not described in this thesis.

11

Chapter 2

From Supervised to Weakly Supervised

Learning

We review in this chapter basic definitions and methods for several learning scenarios,

which will be used in the next chapters. We want to classify an input xi in some input

space X (for example an image of a face) as some label yi in a label space Y (for example

a name, see figure 2.1). The learner seeks to select the best function g : X → Y in some

hypothesis class (or model) G given some form of supervision Dtrain (training data),

some loss function or criterion to optimize, as well as some optimization procedure.

The main dimension we consider is the type of supervision available to the learner, which

we summarize in figure 2.2.

• In supervised learning, the learner has access to a set of m training examples, all of

Figure 2.1: A supervised task: classifying an input face x as a name y.

12

instance label

standard supervised learning

instance label

multi-label learning

label

label

instance label

multi-instance learning

instance

instance

instance

ambiguous-label learning

label

label

only 1 correct label
all correct labels

at least 1 instance has label

label

instance label

semi-supervised learning

instance ?

unsupervised learning

instance ?

Figure 2.2: Diagram of different learning scenarios.

which are labeled: Dtrain = (xi, yi)
m
i=1. This is a fully supervised setting.

• In semi-supervised learning, the learner has access to a set of m labeled examples

as well as a set of m′ unlabeled examples: Dtrain = (xi, yi)
m
i=1} ∪ {(xi)m+m′

i=m+1. This

is a form of partial supervision.

• In multiple-instance learning, examples are not individually labeled but grouped

into sets Si which either contain at least 1 positive example, or only negative exam-

ples: Dtrain = ((xj)j∈Si , yi)
m
i=1. This is a form of weak supervision. We will address

such a setting in chapter 8, and propose a novel convex formulation for multiple

instance constraints.

• In multi-label learning, each example xi is assigned multiple labels, all of which

can be true: Dtrain = (xi, (yj)j∈Si)
m
i=1. This can be considered as a fully supervised

setting.

• In ambiguous learning, which is the topic of chapter 4, each example again is

supplied with multiple potential labels, only one of which is correct. This is a form

of weak supervision.

13

• Finally, unsupervised learning is a degenerate case in which no example is labeled:

Dtrain = (xi)
m
i=1. We will address such a setting in chapter 7, with a temporal group-

ing algorithm.

Note that many other learning scenarios are possible, such as Multi-Instance Multi-

Label Learning [Zhou and Zhang, 2007], Multi-Task Learning[Caruana, 1997], ranking

etc. The prime reason for so many alternatives to standard supervised learning is the

lack of supervised data for practical applications, where human labeling effort is ex-

pensive or unavailable. In many tasks such as the ones we consider in this thesis,

only some form of partial or weak supervision is available, sometimes at little or no

cost in terms of human labeling. In contrast to semisupervised learning, weak super-

vision includes the setting where none of the training examples are labeled; instead

the learner has access to a weaker form of supervision such as grouping constraints,

multiple instance learning constraints or ambiguous label constraints. We review be-

low the main concepts and algorithms referenced in this thesis and refer the reader to

[Zhu, , Chapelle et al., 2006, Maron, 1998, Ghahramani, 2004] for more complete sur-

veys.

2.1 Supervised Learning

In supervised learning, the training data Dtrain = (xi, yi)
m
i=1 is drawn i.i.d. (independent

and identically distributed) from a (unknown) distribution P (x, y). The goal of the learner

is to compute a hypothesis g : X → Y such that g(x) approximates y for new samples

(x, y) ∼ P . Even though the training data is fully supervised, the problem remains funda-

mentally ill-posed as the data is insufficient to find a unique solution that will give the best

generalization. The first decision to make pertains to the hypothesis class G from which

to select g. A wide range of options are available and the best choice often depends on

assumptions about the data (linear separability, presence of outliers, amount of data, prior

model). If G is too large, the model might overfit the training data, and if G is too small the

14

model will underfit and also result in poor generalization. [Maruyama et al., 2002] stud-

ies the relationships in terms of relative approximation ratios between linear discriminant

functions and certain boolean functions (decision lists, decision trees, and conjunctive or

disjunctive normal form boolean formulas). One can distinguish instance-based meth-

ods (k-Nearest Neighbor, radial basis functions) which memorize the training data, from

parametric methods (generalized log-linear models, neural networks, Kernel methods,

decision trees) which summarize the data using parameters. The distinction is subtle how-

ever, as certain methods can be considered as both parametric (primal version of Support

Vector Machine or Perceptron) and instance-based (dual version, expressing the classifier

as linear combination of training inputs). A related problem is model choice, or how to

select the best meta-parameters given the training data. For example, the learner needs to

choose the depth of a decision tree, the number of hidden units in a neural network, or

width for a Gaussian Radial Basis Function. Another example is the type and amount of

regularization. Typically cross-validation [Kohavi, 1995] or one of its variants is used for

that purpose, where one trains the parameters on subsets or folds of the training data and

evaluates on the remaining fold or validation set.

The second decision to make is the loss function or criterion to optimize. We are

given a loss function L : X × Y × Y → <+ such that L(x, y, ŷ) measures the

penalty incurred by a prediction g(x) = ŷ for an example (x, y). For binary classi-

fication, Y = <, y ∈ {+1,−1} and the 0-1 loss is typically used: L(x, y, g(x)) =

1(y 6= sign(g(x))) = 1(yg(x) ≤ 0). More generally, a margin-based loss is of

the form L(x, y, g(x)) = L(yg(x)). We will introduce new interesting losses in the

next chapters for ambiguous learning and sequence partitioning. We define the risk

as R(g) = E(x,y)∼P [L(x, y, g(x))], which the learner estimates using the empirical

risk defined as R̂(g) = E(x,y)∈Dtrain [L(x, y, g(x))], also known as training error for 01

loss. Direct minimization of the empirical risk, however, is intractable in many situa-

tions [Arora et al., 1993, Bishop, 1995, Quinlan, 1986] for the 01-loss, and may lead to

multiple solutions. A common approach is to minimize instead a convex surrogate ψ(z)

15

of the 01-loss, leading to a convex optimization problem for a wide class of models such

as generalized linear models. Figure 2.3 shows examples of surrogate losses commonly

used in algorithms such as Support Vector Machines (hinge loss), Adaboost (exponen-

tial loss), Logistic Regression (log loss). The associated approximation error in replacing

the 01-loss with the surrogate loss is the topic of [Steinwart, 2007, Bartlett et al., 2006].

These studies also suggest that using a smoother loss than the 01-loss can provide regu-

larization benefits, in order to prevent overfitting the training data, i.e.achieving a very

small empirical risk at the expense of actual risk. For example, a nearest-neighbor clas-

sifier achieves zero empirical risk by definition, but may have high variance, which can

be reduced by averaging using K-nearest neighbor classifier. Another common regular-

ization approach is to augment the loss function with an additive regularization term that

penalizes complex models, in effect trading off model complexity with low fitting error,

see [Devroye et al., 1996, Hastie et al., 2001] for more in-depth treatment:

min
g∈G
Reg(g) + CR̂(g) (2.1)

The coefficient C ≥ 0 is set using cross-validation. Early stopping (for example during

boosting or when training Neural Networks) is another example of regularization com-

monly used.

Finally, the choice of the loss function and regularization often dictates the type of

optimization procedure to use, and we can distinguish between tractable methods (such as

the ones arising from convex optimization or certain polynomial time search algorithms)

from intractable ones which involve sampling or some form of search heuristic. We will

focus on methods arising from convex optimization as they are well understood, guar-

antee optimality and often give rise to efficient algorithms. However even for convex

optimization problems with guaranteed polynomial time solutions, the particular type of

problem/solver used can greatly impact the accuracy or running time, a typical example

being different primal/dual formulations of linear Support Vector Machines.

In summary the incurred risk R(g) accumulates four types of errors:

• the estimation error due to finite sample size; this depends on the training data

16

Figure 2.3: Commonly used binary loss functions as continuous upper-bounds on the
01-loss 1(u ≤ 0): hinge loss max(0, 1 − u), log-loss log(1 + exp(−u)), exponential
loss exp(−u), square hinge loss max(0, 1 − u)2, square loss (1 − u)2 and sigmoid loss
1− tanh(u). Note the log-loss is a proper upper bound when scaled by a factor 1/ log(2).
Also note, the square loss is not monotonous, the sigmoid loss is not convex, and the hinge
loss is not differentiable.

• the Bayes Risk ming∈G R(g); this depends on the expressive power of the function

class G

• the approximation error that depends on how well the surrogate loss ψ(z) approxi-

mates the 01-loss

• the optimization error that depends on the accuracy of the optimization procedure

(typically small for convex optimization problems)

2.2 Basic Supervised Classification Models

We review below some important supervised classification models that can be extended

for other types of supervision and that we will use later on.

2.2.1 Generalized Linear Family

We are given a basis of feature functions f : X × Y → <d. Note, the dependency of

f on (x, y) can be arbitrary, including non-linear and even infinite-dimensional via the

17

use of Kernels. A wide class of supervised classification models can be derived from the

generalized linear family, in which a hypothesis is parametrized linearly according to f :

gw(x) = arg max
y

w · f(x, y) (2.2)

2.2.2 Support Vector Machines

Support Vector Machines [Vapnik, 1995] aim at constructing a separating hyperplane that

maximizes the margin between the positive and negative class, resulting in good general-

ization ability. We assume here the feature mapping can be written as f(x, y) = f(x) ∈
<d. In the binary linear separable case, we seek w ∈ <d such that y(w · f(x)− b) ≥ 0 for

each training example (x, y), while maximizing the margin 1/||w||. In the non-separable

case, we introduce slack variables ξi ≥ 0 for each constraint, and arrive at the following

convex quadratic program:

min
w,b,ξ

1

2
||w||2 + C

∑
i

ξi (2.3)

s.t. ξi ≥ 0, yi(w · f(xi)− b) ≥ 1− ξi (2.4)

At the optimum, ξi = ψ(yi(w · f(xi)− b)) where ψ is the hinge loss upper bounding the

01-loss. The dual of (2.3) has the following form:

max
α

∑
i

αi − 1

2

∑
i,j

αiαjyiyjf(xi) · f(xj) (2.5)

s.t. αi ≥ 0, αi ≤ C,
∑
i

αiyi = 0 (2.6)

The dual solution α gives the solution of the primal solution w as a nonnega-

tive (sparse) linear combination of a subset of the inputs (the support vectors): w =∑
i αiyif(xi). Since f(xi) only appears as a dot product in (2.9), the dual can be solved

without reference to the (possibly infinite) dimension of f(xi). We can rewrite the dual

more compactly by introducing the kernel function K(x, x′) def
= f(x) · f(x′), the (positive

semidefinite) matrixK = (K(xi, xj))ij , label matrix Y = (yiyj)ij , and Hadamard product

18

�:

max
α

21Tα− αTK � Y α (2.7)

s.t. α ≥ 0, α ≤ C, yTα = 0 (2.8)

Using the representer theorem, the classifier can be used at run-time on a new input x

without reference to f(x):

w · f(x) =
∑
i

αiK(x, xi) (2.9)

This is commonly referred to as the Kernel trick, and can be used in several other algo-

rithms such as Perceptron, Logistic Regression, Principal Components Analysis, Cluster-

ing. Note, other variations of the regularization term and loss are also possible, but they

may not produce a sparse set of support vectors.

Several multi-class extensions have been proposed to Support Vector Ma-

chines [Crammer et al., 2001, Weston, 1998], for example reducing the multiclass prob-

lem to multiple binary classification problems (one-vs-all or one-vs-one), followed by a

winner-take-all or max-voting strategy. The approach proposed by [Crammer et al., 2001]

differs in that a single binary classification problem is formed: they maximize the minimal

(real valued) margin between f(xi, yi) and all the other labels f(xi, y), ∀i, y 6= yi:

min
w,ξ

1

2
||w||2 + C

∑
i

ξi (2.10)

s.t. w · (f(xi, yi)− f(xi, y)) ≥ 1− ξi ∀i, y 6= yi (2.11)

In this setting, the offset b is redundant, and the feature functions f(x, y) can depend on

the label y ∈ Y = {1, ..., L}.

2.2.3 Boosting

The general idea behind boosting is to linearly combine a set of weak learners (whose

error rate over “any” distribution is < 0.5 − ε, for some fixed ε > 0) into a strong

19

classifier (whose error rate is arbitrarily close to 0). At each round of boosting, a

weak learner is trained with respect to a distribution and added (with some weight)

to the ensemble model, typically depending on the weak learner’s accuracy. The re-

sulting strong classifier can reduce both the variance and the bias of the collection

of weak learners, resulting in superior performance compared to other model averag-

ing methods such as bagging[Breiman, 1996]. A number of different boosting algo-

rithms have been proposed[Freund and Schapire, 1999, Schapire and Singer, 1999], dif-

fering mainly on the choice of the distribution at each round of boosting. For example,

FloatBoost[Li et al., 2003] allows removal of weak learners previously selected. In the

popular Adaboost[Freund and Schapire, 1999] algorithm, a distribution zi is maintained

over the examples (xi, yi) in the training set and updated after each boosting stage, in-

creasing the weight of misclassified inputs. One statistical interpretation is that it fits an

additive logistic regression model by stagewise minimization of E[exp(−yg(x))]. We

present below the Gentle Adaboost[Friedman et al., 2000] variant or Gentleboost, which

minimizes the same functional using Newton steps rather than exact optimization. This

prevents any given weak learner from having too much weight, and hence acts as a regu-

larization. The justification of the algorithm, summarized below, is given by forming the

2nd order Taylor expansion of

L(g) = E[exp(−y(g(x) + u(x)))]

about u(x) = 0: ∀x,

exp(−y(g(x) + u(x))) ≈ exp(−yg(x))(1− yu(x) + y2u(x)2/2) (2.12)

=
1

2
exp(−yg(x))[y − u(x)]2 + constant (2.13)

∝ z · (y − u(x))2 + constant (2.14)

Other base loss functions have been proposed, such as the log loss in

logitboost[Friedman et al., 2000] or even a non-convex loss adapted for noisy datasets,

20

Algorithm 1 Gentleboost

1: Initialize the weights zi = 1/m (i = 1..m), and the ensemble model g(x) = 0
2: for t = 1 . . . T do
3: compute weighted least-squares fit gt = arg minu∈G Ez[(y − u(x))2]
4: update the ensemble g(x) := g(x) + gt(x)
5: update the weights z := z exp(−ygt(x)) and renormalize
6: end for
7: Output the strong classifier sign(g(x)) = sign(

∑
t g

t(x))

Brownboost[Freund, 2001]. Similarly to the SVM case, a number of multiclass vari-

ants have been proposed, such as [Schapire and Freund, 1997, Schapire and Singer, 1999,

Zhu et al., , Allwein et al., 2000].

Of course, the quality of the final classifier is limited by the expressive power of the

weak learner class of functions. For example, to achieve zero error on a non-linearly sepa-

rable training set (such as the truth table of the boolean XOR function), one must use non-

linear weak learners. The simplest, yet effective, example is a decision stump of the form

u(x) = f(x) ≤ θ for some feature function f(x) and some threshold θ ∈ <. In general the

accuracy of classifier owes a lot to the design of good features that generalize well by in-

corporating domain knowledge. For example, for face detection, [Viola and Jones, 2004]

uses an overcomplete basis of Haar features f(x) defined on a 24 × 24 gray-level image,

which are more robust than single pixel estimates. Other more complex weak learners can

be used, such as Classification and Regression Trees (CART)[Lewis, 2000], but may lead

to a non closed form solution when searching for the optimal newton update.

2.3 Semi-Supervised Learning

So far all the models discussed assume each training example has an associated label.

In many applications, however, labeled data is hard to obtain, requiring costly human or

expert annotation. On the other hand, the common assumption is that unlabeled data is

plentiful and the central question is whether or not it can be used along with labeled data

21

to build better classifiers. We will denote as (xi, yi) the m labeled examples and x′i the

m′ unlabeled examples whose label y′i is to be determined. In generative models such as

mixture models, the joint distribution P (x, y) explicitly models P (x|y) as a function of

the conditional model P (x|y) and the prior P (x) that models the unlabeled (and labeled)

data. In discriminative models (such as Transductive Support Vector Machines and graph-

based methods) which do not model P (x, y) explicitly, the prior P (x) is integrated into

the objective to influence the classifier.

In absence of any other information, unlabeled data can therefore be used to push the

decision boundary of the classifier towards low density regions of P (x). Consider for

example the task of naming faces in a movie. If the set of (automatically extracted) faces

are organized into k well-separated clusters, a single label per cluster could in theory be

used to label the set of all faces. In many situations however, weak labeling information

is available in the form of pairwise constraints of the form (xi, xj, yij) with yij = +1

if xi, xj must have the same (unknown) label (must-link constraint), and yij = −1 if

xi, xj must have a different label (must-not-link constraint). For example, two faces in

the same face track should have the same label, while two faces in the same image should

have different labels. Another form of weak supervision is a prior on the proportion of

each class (or relative proportions), of the form P (yi) or P (yi, yj). For example, one

could expect the relative proportions of names of faces in a movie to match the number of

occurrences of each character in the screenplay, or the order given by the cast list.

In order for semisupervised learning to be successful, the model assumptions need

to be adapted to the data, for example by building good features or kernels, such that

distances within a class tend to be smaller than distances across classes. This can be

problematic however since generally only few labeled examples are provided to begin

with. A natural solution is self training, in which a classifier is initialized based on

the labeled data points only, and then iteratively re-trained based on the high-confidence

predictions of the classifier at the previous iteration. Such approach has been used suc-

cessfully in [Everingham et al., 2006] to label characters in TV series, with initial labels

22

coming from alignment of the screenplay to faces classified as “speaking”. The perfor-

mance of such algorithms is in general hard to analyze and depends largely on the qual-

ity of the initial labeled data. In particular, the predictions can become over-confident

and even drift away from the initial labels if no special provision is taken. Co-training

[Blum and Mitchell, 1998], or more generally Multiview learning, provides such a guard

by making sure the predictions agree among two independent classifiers. Each classifier

is trained using one split of the feature set. Good performance can be achieved if the two

sets of features are independent, and are sufficient to train a classifier.

Mixture models trained with Expectation Maximization (EM) provide a softer solu-

tion to solve this chicken-and-egg problem, avoiding to make hard decisions at each step.

The model iteratively estimates the posterior P (x|y) and the parameters of the mixture

model, using coordinate ascent on a lower bound of the data log-likelihood.

In Transductive Support Vector Machines (TSVM) [Vapnik, 1995, Joachims, 1999],

the SVM formulation is augmented with a search over the unknown labels y′ ∈ {+1,−1}
for the unlabeled examples x′:

min
w,b,ξ,ξ′,y′

1

2
||w||2 + C

∑
i

ξi + C ′
∑
i

ξ′i (2.15)

s.t. ξi ≥ 0, yi(w · f(xi)− b) ≥ 1− ξi (2.16)

ξ′i ≥ 0, y′i(w · f(x′i)− b) ≥ 1− ξ′i (2.17)

This can be interpreted by removing the labels y′ from the optimization and adding the

following non convex regularization term on the objective, which drives the decision hy-

perplane away from dense region:

C ′
∑
i

ψ̂(w · f(x′i)− b) (2.18)

with ψ̂(u)
def
= max(0, 1− |u|) (2.19)

23

Both formulations as well as the approaches presented thus far, however, are non-

convex in nature and suffer from existence of multiple local minima. A conse-

quence is that the quality of the solution depends crucially on the particular (approx-

imate) optimization method used, except for small problems where exact search is

possible[Chapelle et al., 2007]. In contrast, for exact methods such as the ones arising

from convex optimization, the algorithmic component can be decoupled from the cost

function itself as one can efficiently find the optimal solution to arbitrary precision. Such

methods are easier to analyze and compare against each other.

One way to obtain a convex formulation is by convex relaxation, either of the objec-

tive, or the constraint set. Chief among those methods are the ones based on Semidefi-

nite Programming (SDP). For example, [Bie and Cristianini, 2004] starts with the dual of

(2.15), which adds to (2.7) a constraint of the form Yij ∈ {+1,−1} on the label matrix

Y = (yiyj)ij , and relax it into a semidefinite constraint Y � 0 plus other linear constraints.

In graph-based semisupervised algorithms, nodes represent labeled and unlabeled ex-

amples and edges wij represent weighted must-link constraints between examples. In the

mincut formulation of [Blum and Chawla, 2001], they optimize an objective equivalent to

min
y′∈{+1,−1}m′

∑
i′j′

wij(y
′
i′ − y′j′)2 +

∑
ij′

wij′(yi − y′j′)2 (2.20)

which can be solved with graph mincut. The Gaussian random fields method

of [Zhu et al., 2003] solves a related “softer” problem allowing yij ∈ <,

which can be solved in closed-form with a linear system, while the mani-

fold regularization of [Belkin et al., 2006] allows for more general losses and

out-of-sample predictions. Those methods can be extended to multiclass set-

ting, using multiway graphcuts [Boykov et al., 2001], multi-label random walker

segmentation [Grady and Funka-Lea, 2004], or approaches based on spectral

clustering[De Bie et al., 2004].

A straightforward way to encode a must-link constraint between xi and xj is a penalty

24

of the form

wij
∑
a

ψ(ga(xi)− ga(xj)) + ψ(ga(xj)− ga(xi)) (2.21)

where ψ(·) is some convex loss, with a one-versus-all representation (ga)a of the classifier.

However, while incorporating must-not-link constraints is relatively straightforward in

the binary setting (replacing the penalty by wij(ψ(g(xi) + g(xj)) + ψ(−g(xj)− g(xi)))),

it gets tricky in the multiclass setting. The root of the difficulty can be summarized by the

following misconception: “The enemy of my enemy is my friend”, which does not always

hold in a multipolar society! More precisely, at least one of those equalities for a ∈ Y will

hold: ga(xi)ga(xj)) ≥ 0 unless ga(xi) or ga(xj) is positive for more than one label a ∈ Y .

In either case we will incur some penalty in the loss function. [Yan et al., 2004] proposes

to address this problem with a one-sided penalty, of the form

wij
∑
a

(ψ(−ga(xi)− ga(xj)), (2.22)

penalizing the only case when both terms ga(xi), ga(xj) are large. They demonstrate

the use of such constraints in a surveillance video person classification task with simple

temporal constraints. Another paper [Goldberg et al., 2007] uses the same form of must-

not-link constraint to determine political affiliation of users in a discussion board, with

quoting another user’s post as a potential source of dissimilarity constraints.

2.4 Multiple instance Learning

The semisupervised learning framework still requires at least a few examples to be la-

beled. Multiple Instance Learning (MIL) goes a step further by assuming examples are

not individually labeled but grouped into sets Si (called bags) which either contain at least

1 positive example, or only negative examples. The first instances of MIL was intro-

duced in [Dietterich et al., 1997] for a drug activity prediction, where positive molecules

contain at least one binding shape, and negative molecules contain no binding shape. It

25

has since then been applied to a variety of problems including Content Based Image Re-

trieval (CBIR), object detection[Maron and Lozano-Pérez, 1998, Viola et al., 2006] and to

some extent [Fergus et al., 2007, Crandall and Huttenlocher, 2006], text classification to

name a few. Several approaches have been proposed, which [Gehler and Chapelle, 2007]

classifies into 3 categories: the first category treats the problem directly at the bag-

level instead of the instance level, using Hausdorff type distances to compare bags

[Wang and Zucker, 2000]. The second category assumes that all instances in a positive

bag are either positive or negative instances, and optimizes over their labels. For example,

mi-SVM[Andrews et al., 2003] attempts to solve the following problem:

min
w,b,ξ,y′

1

2
||w||2 + C

∑
i

ξi (2.23)

s.t. ξi ≥ 0, yi(w · f(xi)− b) ≥ 1− ξi (2.24)∑
i

yi + 1

2
≥ 1 for a positive bag, yi = −1 for a negative bag (2.25)

yi ∈ {+1,−1} (2.26)

The problem is combinatorial in nature, as was TSVM, and heuristics need to be em-

ployed. The assumption about labeling each instance may be invalid for certain object

detection tasks where a given instance (patch) in a positive bag (image) near the object of

interest does not exactly fit either the foreground or background category. A third category

seeks to identify which one of the instances in a positive bag is positive, without forcing

the other ones to be negative. This is usually carried out through a combinatorial formu-

lation, or a continuous relaxation that searches over the convex hull of the instances. For

example, the authors of [Fung et al., 2007] claim they are guaranteed to find the global op-

timum of a related Convex Hull MIL problem, but it seems the optimization problem they

solve in equation (3), page 3 is non-convex, with a quadric term hidden in the objective.

In any case, such MIL algorithms are essentially intractable and suffer from existence of

local minima.

26

2.5 Multi-Label Learning

Multi-Label learning breaks the assumption that labels are mutually exclusive, and

in fact allows for correlation between them. Such problems can generally be con-

sidered as fully supervised. Originally motivated by text classification and medical

diagnosis, where a document could be classified according to multiple interrelated

criteria, it has since then been applied to a variety of problems such as protein function

classification, music categorization and scene classification. There are multiple ways

to convert a Multi-Label problem to a supervised problem, for example the power

set representation may be desirable if the set of labels is not too large. A more

straightforward method is to learn independent binary classifiers for each label, which

has been used for scene classification[Boutell et al., 2004], document classification

[Goncalves and Quaresma, 2003] and music categorization[Li and Ogihara, 2003]. A

number of boosting variants address Multi-Label learning, for example Adaboost.MH,

Adaboost.M2, SAMME[Schapire and Singer, 1999, Schapire and Freund, 1997,

Zhu et al.,] propose different encodings of supervisory information.

In contrast several approaches[Qi et al., 2007, Wang et al., 2008,

Godbole and Sarawagi, 2004, Schapire, 1997] explicitly use correlation between la-

bels to improve classification accuracy. [Godbole and Sarawagi, 2004] uses a form

of stacking[Wolpert, 1992] to exploit potential correlation between class labels, by

augmenting the input features with class predictions of single-label classifiers. Those

classifiers are initially trained on each label separately, and iteratively updated. Label

correlation is also exploited in a boosting variant[Schapire, 1997], where output codes are

used to ease the task of each weak learner.

2.6 Ambiguous Learning

In ambiguous learning, each example again is supplied with a bag of multiple potential

labels, but only one of them is correct. In contrast with Multi-Label learning, this is a form

27

of weak supervision, where potentially no single example is fully labeled. This ambigu-

ous form of supervision is the topic of chapter 4, in which we show both theoretically and

in practice that learning is possible even when all the training examples are ambiguously

labeled. This problem is loosely related to another weakly supervised task, Multiple In-

stance Learning with a few notable differences: 1) because of mutual exclusion of labels,

there is exactly one correct label in each bag (instead of at least one example in each multi

instance bag), 2) the problem is inherently multi-class instead of binary, 3) some exam-

ples may have a bag containing all labels, which means it has no label information as in

semisupervised learning.

2.7 Unsupervised Learning

The general goal of unsupervised learning is to discover hidden structures underlying ob-

served data. The precise definition differs according to the modeling assumptions, for

example generative models seek to optimize the data likelihood, while an information

theoretic criterion is redundancy reduction via efficient coding, such as sparse coding,

minimum entropy, minimum description length [Barlow, 1989]. Two common problemat-

ics are dimensionality reduction and clustering, both of which are well studied problems.

Instead of giving an overview of the huge amount of literature, we will mention some of

our previous work in image segmentation and two applications related to sequence cluster-

ing for video analysis which we discuss in this thesis. We propose in [Cour et al., 2005a]

a segmentation algorithm that operates on multiple scales simultaneously. The algorithm,

motivated by ecological statistics on natural images, compresses long-range interactions

between image pixels, thereby allowing for large-scale image segmentation in linear time

without loss of fine-grain accuracy. In [Cour and Shi, 2007a] we address the problem

of object specific segmentation, combining bottom-up grouping information in the form

of superpixels, and top-down modeling via an articulated object model. Our algorithm

28

simultaneously searches for the optimum combination of superpixels composing the fore-

ground object, jointly with the space of model configurations. We show how exhaustive

search can be carried out efficiently for this seemingly combinatorial problem, and pro-

duces a short-list of accurate segmentations that can be used by a reranker. We also pro-

pose in [Cour et al., 2005b] a learning algorithm for spectral graph clustering, that allows

for direct supervised learning of graph structures using training examples of segmenta-

tions. In contrast to previous work, the algorithm works directly on the segmentation

eigenvectors, for which we provide closed form derivatives using the implicit function

theorem, as well as a convergence analysis.

In chapter 3 we introduce a novel hierarchical generative model for video deconstruc-

tion, revealing the coarse-level structure composed of a hierarchy of scenes, threads, shots

and images. We show how a detailed analysis of movie structure helps for video retrieval

tasks, person tracking and recognition as well as activity recognition. In chapter 8 we

seek a finer-grain representation of movies, with the task of clustering (and subsequently

naming) people’s faces across a movie. We propose a novel temporal grouping model

that partitions face tracks across multiple shots while respecting appearance, geometric

and film-editing cues and constraints. We present dynamic programming inference and

discriminative learning for the model, where states represent local partitions.

29

Chapter 3

Coarse-Level Alignment of Video and

Text Transcriptions

3.1 Introduction

Hand-labeling images of people and objects is a laborious task that is difficult to scale

up. Several recent papers [Huang et al., 2007a, Ramanan et al., 2007] have successfully

collected very large-scale, diverse datasets of faces “in the wild” using weakly supervised

techniques. These datasets contain a wide variation in subject, pose, lighting, expression,

and occlusions which is not matched by any previous hand-built dataset. Labeling and

segmenting actions is perhaps an even more painstaking endeavor, where curated datasets

are more limited. Automatically extracting large collections of actions is of paramount

importance. In this chapter, we argue that using movies and TV shows precisely aligned

with easily obtainable screenplays can pave a way to building such large-scale collections.

Figure 3.1 illustrates this goal, showing the top 6 retrieved video snippets for 2 actions

(walk, turn) in TV series LOST using our system. The screenplay is parsed into a tempo-

rally aligned sequence of action frames (subject verb object), and matched to detected and

named characters in the video sequence. Simultaneous work[Laptev et al., 2008] explores

similar goals in a more supervised fashion. In order to enable accurately localized action

30

retrieval, we propose a much deeper analysis of the structure and syntax of both movies

and transcriptions.

Movies, TV series, news clips, and nowadays plentiful amateur videos, are designed

to effectively communicate events and stories. A visual narrative is conveyed from multi-

ple camera angles that are carefully composed and interleaved to create seamless action.

Strong coherence cues and continuity editing rules are (typically) used to orient the viewer,

guide attention and help follow the action and geometry of the scene. Video shots, much

like words in sentences and paragraphs, must fit together to minimize perceptual disconti-

nuity across cuts and produce a meaningful scene. We attempt to uncover elements of the

inherent structure of scenes and shots in video narratives. This uncovered structure can be

used to analyze the content of the video for tracking objects across cuts, action retrieval,

as well as enriching browsing and editing interfaces.

We present a framework for automatic parsing of a movie or video into a hierarchy of

shots and scenes and recovery of the shot interconnection structure. Our algorithm makes

use of both the input image sequence, closed captions and the screenplay of the movie.

We assume a hierarchical organization of movies into shots, threads and scenes, where

each scene is composed of a set of interlaced threads of shots with smooth transitions of

camera viewpoint inside each thread (see figure 3.2). To model the scene structure, we

propose a unified generative model for joint scene segmentation and shot threading. We

show that inference in the model to recover latent structure amounts to finding a Hamilto-

nian path in the sequence of shots that maximizes the “head to tail” shot similarity along

the path, given the scene boundaries. Finding the maximum weight Hamiltonian path (re-

ducible to the Traveling Salesman Problem or TSP) is intractable in general, but in our

case, limited memory constraints on the paths make it tractable. In fact we show how to

jointly optimize scene boundaries and shot threading in linear time in the number of shots

using a novel hierarchical dynamic program.

We introduce textual features to inform the model with scene segmentation, via

temporal alignment with screenplay and closed captions, see figure 3.3. Such text data

31

Figure 3.1: Action retrieval using alignment between video and parsed screenplay. For
each action verb (left: walk, right: turn), we display the top 6 retrieved video snippets in
TV series LOST using our system. The screenplay and closed captions are parsed into
a temporally aligned sequence of verb frames (subject-verb-object), and then matched to
detected and named characters in the video sequence. The third retrieval, second column
(“Jack turns”) is counted as an error, since the face shows Boone instead of Jack. Addi-
tional results appear under www.seas.upenn.edu/˜timothee.

32

www.seas.upenn.edu/~timothee

has been used for character naming [Sivic et al., 2005, Everingham et al., 2006] and is

widely available, which makes our approach applicable to a large number of movies

and TV series. In order to retrieve temporally-aligned actions, we delve deeper into

resolving textual ambiguities with pronoun resolution (determining whom or what ‘he’,

‘she’, ‘it’, etc. refer to in the screenplay) and extraction of verb frames. By detecting and

naming characters, and resolving pronouns, we show promising results for more accurate

action retrieval for several common verbs. We present quantitative and qualitative results

for scene segmentation/alignment, shot segmentation/threading, tracking and character

naming across shots and action retrieval in numerous episodes of popular TV series, and

illustrate that shot reordering provides much improved character naming.

The main contributions of the chapter are: 1) novel probabilistic model and inference

procedure for shot threading and scene alignment driven by text, 2) extraction of verb

frames and pronoun resolution from screenplay, and 3) retrieval of the corresponding ac-

tions informed by scene structure and character naming.

The chapter is organized as follows. Section 3.2 proposes a hierarchical organization

of movies into shots, threads and scenes. Sections 3.3 and 3.4 introduce a generative model

for joint scene segmentation and shot threading, and a hierarchical dynamic program to

solve it as a restricted TSP variant. Section 3.5 addresses the textual features used in our

model. We report results in section 3.6 and conclude in section 3.7.

3.2 Movie elements: shots, threads, scenes

Movies and TV series are organized in distinctive hierarchical and continuity structures

consisting of elements such as scenes, threads and shots. Detecting and recovering these

elements is needed for uninterrupted tracking of objects and people in a scene across mul-

tiple cameras, recovering geometric relationships of objects in a scene, intelligent video

browsing, search and summarization.

33

Figure 3.2: Deconstruction pipeline.

Shot boundaries. The aim of shot segmentation is to segment the input frames into

a sequence of shots (single unbroken video recordings) by detecting camera view-

point discontinuities. A popular technique is to compute a set of localized color

histograms for each image and use a histogram distance function to detect bound-

aries [Lienhart, 2001, Ngo et al., 2001].

Shot threads. Scenes are often modeled as a sequence of shots represented as letters:

ABABAB represents a typical dialog scene alternating between two camera points of

view A and B. More complex patterns are usually observed and in practice, the clustering

of the shots into letters (camera angles/poses) is not always a very well defined problem,

as smooth transitions between shots occur. Nevertheless we assume in our case that each

shot in a scene is either a novel camera viewpoint or is generated from (similar to) a

previous shot in the scene. This makes weaker assumptions about the scene construction

and doesn’t require reasoning about the number of clusters. In the example above, the

34

Figure 3.3: Alignment between video, screenplay and closed captions

35

first A and B are novel viewpoints, and each subsequent A and B is generated by the

previous A or B. Figure 3.6 shows a more complex structure.

Scene boundaries. A scene consists of a set of consecutive semantically related shots

(coherence in action, location and group of actors is typical). The process of seg-

menting a video sequence into scenes has received some attention in the video anal-

ysis literature [Ngo et al., 2001]. An MCMC based clustering framework is used in

[Zhai and Shah, 2006]. Hierarchical clustering on a shot connectivity graph is proposed

in [Yeung et al., 1998]. In [Kender and Yeo, 1998], the authors detect scene boundaries

as local minima of a backward shot coherence measure. As opposed to shot boundaries,

which correspond to strong visual discontinuity in consecutive frames, scene boundaries

are not detectable from purely local cues: the entire sequence of preceding and following

shots must be considered. For example, ABCBABDEFEABD shot sequence is one scene,

while ABCBAB DEFEDEF can be two.

3.3 A (simple) generative model of movies

To capture the hierarchical and continuity structure, we propose a simple generative

model, where scenes are constructed independently of other scenes, while shots within

a scene are produced via an interleaved Markov (first order) structure.

We begin with some notation to define our model, assuming the video sequence has

already been segmented into shots:

• si: ith shot (interval of frames), with i ∈ [1, n]

• bj: jth scene boundary (index of its last shot), with j ≤ m; 1 ≤ b1 < ... < bm = n

• pj[i]: parent generating shot i in scene j (could be NULL), with j ≤ m, i ≤ n.

We assume the shots in a video sequence are generated as follows: first generate the

sequence of scene boundaries (bj), then generate for each scene j a dependency structure

36

Figure 3.4: Graphical model for joint scene segmentation and shot reordering, see text for
details.

pj defining a Markov chain on shots, and finally generate each shot i given its parent

pj[i]. The model is conditioned upon m and n, assumed to be known in advance. This

can be represented using the generative model in figure 3.4. For the scene boundary

model P (b), we investigate both a uniform model and an improved model, where scene

boundaries are informed by the screenplay (see section 3.5). The shot threading model

P (p|b) is uniformly distributed over valid Markov chains (shot orderings) on each scene.

The shot appearance model P (si|spj [i]) is treated next (we set it to uniform for the root of

scene j where pj[i] = NULL). This model encourages (1) smooth shot transitions within

a scene and (2) scene breaks between shots with low similarity, since the model doesn’t

penalize transitions across scenes.

Shot appearance model (P (si′|si)). In order to obtain smooth transitions and allow

tracking of objects throughout reordered shots, we require that P (si′ |si) depends on the

similarity between the last frame of shot si (I = slast
i) and the first frame of shot si′

(I ′ = sfirst
i′). Treating each shot as a word in a finite set, we parametrize the shot similarity

term as P (si′ |si) = exp(−dshot(si, si′))/
∑

i′′ exp(−dshot(si, si′′)) where dshot(si, si′) =

dframe(I, I
′) is the chi-squared distance in color histogram between frames I, I ′. Note,

dshot(si, si′) is not symmetric, even though dframe(I, I
′) is.

37

3.4 Inference in the model

In this section we attempt to solve the Maximum a Posteriori (MAP) problem in figure

3.4. Let us first consider the simplified case without scene transitions (when m = 1). In

this case, maximizing the log becomes:

max
p:Markov Chain

∑
i

Wi,p[i] = max
π∈P[1,n]

∑
t

Wπt−1,πt (3.1)

where Wii′ = logP (si′|si) and π ∈ P[1,n] denotes a permutation of [1, n] defined recur-

sively from the parent variable p as follows: p[πt] = πt−1, with π1 indicating the root. This

amounts to finding a maximum weight Hamiltonian Path or Traveling Salesman Prob-

lem (TSP), with πt indicating which shot is visited at time t on a virtual tour. TSPs are

intractable in general, so we make one additional assumption restricting the set of feasible

permutations.

3.4.1 Memory-limited TSPs

Given an integer k > 0 (memory width), and an initial ordering of shots (or cities by

analogy to TSP) 1, ..., n, we introduce the following limited memory constraint on our

hamiltonian path π = (πt):

Pk[1,n] = {π ∈ P[1,n] : ∀(i, i′)i′ ≥ i+ k ⇒ πi′ > πi} (3.2)

This is illustrated in figure 3.5 for k = 2 (k = 1 means π is the identity, and k = n

is fully unconstrained). There are two important consequences: (1) the MAP becomes

tractable (linear complexity in n), and (2) the problem becomes sparse, i.e., we can restrict

W.L.O.G. W to be sparse (banded):

πt ∈ [t− (k − 1), t+ (k − 1)] (3.3)

Wii′ = −∞ except for i− (2k − 3) ≤ i′ ≤ i+ 2k − 1 (3.4)

The first line comes from the pigeonhole principle, and the second one uses the first line:

−(2k − 3) ≤ πt+1 − πt ≤ 2k − 1. Note, this constraint is natural in a video sequence, as

38

Figure 3.5: Top left: a feasible solution for the restricted TSP with k = 2. Bottom left:
an infeasible solution, violating the precedence constraint (shaded cities). Middle: the
constraint limits the range of the permutation: πt ∈ [t− (k − 1), t + (k − 1)]. Right: the
constraint implies a banded structure on the similarity matrix W = (Wii′): i− (2k− 3) ≤
i′ ≤ i+ 2k − 1.

video editing takes into account the limited memory span of humans consisting of a few

consecutive shots.

3.4.2 Dynamic Programming solution without scene breaks

(P (p, s))

The solution to the simplified problem without scene breaks (3.1) under constraint (3.2)

has been addressed in [Balas and Simonetti, 2001] (it dealt with a hamiltonian cycle with

π1(1) = 1, but this is easily adaptable to our case). We summarize the main points be-

low. Let Ct(S, i′) be the optimal cost of the paths π ∈ Pk[1,n] satisfying πt = i′ and

{π1, ..., πt−1} = S (set of cities visited before time t). The dynamic programming solu-

tion uses the relation:

Ct(S, i
′) = min

i∈S
Ct−1(S − {i}, i) +Wii′ (3.5)

39

Because of the precedence constraint, the pair (S, i′) can take at most (k+1)2k−2 possible

values at any given time t (instead of
(
n−1
t−1

)
n without the constraint). The idea is to con-

struct a directed weighted graph Gk
n with n layers of nodes, one layer per position in the

path, with paths in the graph joining layer 1 to layer n corresponding to feasible hamilto-

nian paths, and shortest paths joining layer 1 to n corresponding to optimal hamiltonian

paths. Since there are at most k incoming edges per node (corresponding to valid transi-

tions πt−1 → πt), the total complexity of the dynamic program is O(k(k + 1)2k−2 · n),

exponential in k (fixed) but linear in n, see [Balas and Simonetti, 2001] for details.

3.4.3 Dynamic Programming solution with scene breaks (P (b, p, s))

The general problem can be rewritten as:

max
b

∑
j

max
π∈Pk

(bj−1,bj]

∑
t

Wπt−1,πt (3.6)

Naive solution. One can solve (3.6) as follows: for each interval I ⊂ [1, n], pre-

compute the optimal path π∗I ∈ PkI using 3.4, and then use a straightforward dynamic

programming algorithm to compute the optimal concatenation of m such paths to form

the optimal solution. Letting f(k) = k(k + 1)2k−2, the complexity of this algorithm is

O(
∑

1≤i≤i′≤n f(k) · (i′ − i + 1)) = O(f(k)n(n + 1)(n + 2)/6) for the precomputation

and O(mn(n + 1)/2) for the dynamic program, which totals to O(f(k)n3/6). The next

paragraph introduces our joint dynamic programming over scene segmentation and shot

threading, which reduces computational complexity by a factor n (number of shots).

Joint dynamic program over scene breaks and shot threading. We exploit the

presence of overlapping subproblems. We construct a single tour π, walking over the

joint space of shots and scene labels. Our approach is based on the (categorical) product

graph Gk
n × Cm where Gk

n is the graph from 3.4.2 and Cm is the chain graph of order m.

A node (u, j) ∈ Gk
n × Cm represents the node u ∈ Gk

n in the jth scene. Given

two connected nodes u = (S, i, t) and u′ = (S ′, i′, t + 1) in Gk
n, there are two types of

40

connections in the product graph. The first connections correspond to shots i, i′ both being

in the jth scene:

(u, j)→ (u′, j), with weight Wii′ (3.7)

The second connections correspond to a scene transition:

(u, j)→ (u′, j + 1), with weight 0, (3.8)

and only happen when u = (S, i, t) satisfies max(i,max(S)) = t, to make sure the tour

decomposes into a tour of each scene (we can switch to the next scene when the set of

shots visited up to time t is exactly {1, ..., t}).

The solution to (3.6) similarly uses a dynamic program to find the shortest path in

Gk
n × Cm (and backtracking to recover the arg max). Since there are m times as many

nodes in the graph as in Gk
n and at most twice as many incoming connections per node

(nodes from the previous scene or from the same scene), the total complexity is: O(2k(k+

1)2k−2mn) = O(2f(k)mn).

Comparison. We manually labeled shot and scene breaks for a number of movies and TV

series and found that a typical scene contains on average about 11 shots, i.e.m ≈ n/11. So

the reduction in complexity between the naive algorithm and our joint dynamic program

is: O(f(k)n3/6
2f(k)mn

) = O(n2/(12m)) ≈ n, which is a huge gain, especially given typical values

of n = 600. The resulting complexity is linear in n and m and in practice takes about 1

minute as opposed to 11 hours for an entire episode, given pre-computed shot similarity.

3.5 Scene segmentation via coarse image to text align-

ment (P (b))

We now assume we have some text data corresponding to the movie sequence, and we

focus on simultaneously segmenting/threading the video into scenes and aligning the text

with the video. The extra text media removes a lot of ambiguity for the scene segmentation

41

Figure 3.6: Shot reordering to recover continuity in 3 scenes of LOST.

and, combined with our model, leads to improved scene segmentation results as we shall

see in section (3.6).

3.5.1 Text data: screenplay and closed captions

We use two sources of text for our segmentation-alignment problem: the screenplay, which

narrates the actions and provides a transcript of the dialogs, and the closed captions, which

provide time-stamped dialogs, as in figure 3.3. Both sources are essential since the screen-

play reveals speaker identity, dialogs and scene transitions but no time-stamps, and closed

captions reveal dialogs with time-stamps but nothing else. See the appendix for details on

how to obtain screenplays and closed captions.

3.5.2 Screenplay/closed captions alignment

The alignment between the screenplay and the closed captions is non-trivial since the

closed captions only contain the dialogs (without speaker) mentioned in the screenplay,

often with wide discrepancies between both versions. We extend the dynamic time

warping[Myers and Rabiner, 1981] approach in a straightforward way to time-stamp each

element of the screenplay (as opposed to just the dialogs as in [Everingham et al., 2006]).

42

The screenplay is first parsed into a sequence of elements (either NARRATION, DIA-

LOG, or SCENE-TRANSITION) using a simple grammar, and the dynamic program-

ming alignment of the words in the screenplay and the closed captions provides a time

interval [T start(i), T end(i)] for each DIALOG element Ei. A NARRATION or SCENE-

TRANSITION element Ej enclosed between two DIALOG elements Ei1 , Ei2 is assigned

the following conservative time interval: [T start(i1), T
end(i2)].

3.5.3 Scene segmentation via alignment

We determine the scene boundary term P (b) from section 3.3 by aligning each SCENE-

TRANSITION element mentioned in the screenplay to a scene start. P (b) is uniform

among the set of b satisfying the temporal alignment constraints:

1 ≤ b1 < ... < bm = n (3.9)

tstart(j) ≤ bj−1 + 1 ≤ tend(j) (3.10)

where [tstart(j), [tend(j)] is the time interval of the jth SCENE-TRANSITION element,

converted into frame numbers, then to shot indexes.

Additional alignment constraints. Close inspection of a large number of screenplays

collected for movies and TV series revealed a fairly regular vocabulary used to describe

shots and scenes. One such example is FADE IN and FADE OUT corresponding to a

transition between a black shot (where each frame is totally black) and a normal shot, and

vice versa. Such black shots are easy to detect, leading to additional constraints in the

alignment problem, and a performance boost.

3.5.4 Pronoun resolution and verb frames

Alignment of the screenplay to dialog in closed captions and scene boundaries in the

video helps to narrow down the scope of reference for other parts of the screenplay that

are interspersed – the narration or scene descriptions, which contain mentions of actions

and objects on the screen. In addition to temporal scope uncertainty for these descriptions,

43

there is also ambiguity with respect to the subject of the verb, since personal pronouns

(he, she) are commonly used. In fact, our analysis of common screenplays reveals

there are more pronouns than occurrences of character names in the narrations, and so

resolving those pronouns is an important task. We employed a simple, deterministic

scheme for pronoun resolution that uses a standard probabilistic context-free parser to

analyze sentences and determine verb frames (subject-verb-object) and then scans the

sentence for possible antecedents of each pronoun that agree in number and gender, see

figure 3.7. The details of the algorithm are given in supplemental materials. Here is an

example output of our implementation on a sentence extracted from screenplay narration

(pronoun resolution shown in parenthesis): On the side, Sun watches them. Jin reaches

out and touches Sun ’s chin, his (Jin’s) thumb brushes her (Sun’s) lips. She (Sun) looks at

him (Jin) and pulls away a little. He (Jin) puts his (Jin’s) hand down.

Output verb frames: (Sun - watches - something) (Jin - reaches out -) (Jin - touches -

chin) (Sun - looks - at Jin) . (Sun - pulls away -) (Jin - puts down - hand).

We report pronoun resolution accuracy on screenplay narrations of 3 different TV series

(about half a screenplay for each), see table 3.1.

total verbs 25,000
distinct verbs 1,000

looks (most common) 2,000
turns 1,100
walks 800
takes 550

climbs 40
kisses 40

total dialog lines 16,000
distinct speaker names 190
Jack (most common) 2,100

Figure 3.7: Left: pronoun resolution and verb frames obtained from the parsed screenplay
narrations. Right: statistics collected from 24 parsed screenplays (1 season of LOST).

44

TV series screenplay pronoun resolution accuracy # pronouns # sentences
LOST 75% 93 100
CSI 76 % 118 250

ALIAS 78% 178 250

Table 3.1: Pronoun resolution accuracy on screenplay narrations of 3 different TV series.

3.6 Results

We experimented with our framework on a significant amount of data, composed of TV

series (19 episodes from one season of LOST, several episodes of CSI), one feature length

movie “The Fifth Element”, and one animation movie “Aladdin”, representing about 20

hours of video at DVD resolution. We report results on scene segmentation/alignment,

character naming and tracking.

3.6.1 Shot segmentation

We obtain 97% F-score (harmonic mean of precision and recall) for shot segmentation,

using standard color histogram based methods.

3.6.2 Scene segmentation and alignment

We hand labeled scene boundaries in one episode of LOST and one episode of CSI based

on manual alignment of the frames with the screenplay. The accuracy for predicting the

scene label of each shot was 97% for LOST and 91% for CSI. The F-score for scene

boundary detection was 86% for LOST and 75% for CSI, see figure 3.8. We used k = 9

for the memory width, a value similar to the buffer size used in [Kender and Yeo, 1998]

for computing shot coherence. We also analyzed the effect on performance of the memory

width k, and report results with and without alignment to screenplay in table 3.2. In

comparison, we obtained an F-score of 43% for scene boundary detection using a model

based on backward shot coherence [Kender and Yeo, 1998] uninformed by screenplay, but

45

optimized over buffer size and non-maximum suppression window size.

3.6.3 Scene content analysis

We manually labeled the scene layout in the same episodes of LOST and CSI, providing

for each shot in a scene its generating shot (including the special case when this is a new

viewpoint). We obtain a precision/recall of 75% for predicting the generating parent shot.

See figure 3.6 for a sample of the results on 3 scenes. Note, to obtain longer tracks in

figure 3.6, we recursively applied the memory limited TSP until convergence (typically a

few iterations).

3.6.4 Character identification on reordered shots

We illustrate a simple speaker identification based on screenplay alignment and shot

threading, see figure 3.9 (more elaborate models will be proposed in later chapters). We

use a Viola-Jones[Viola and Jones, 2004] based face detector and tracking with normal-

ized cross-correlation to obtain face tracks in each shot. We build a Hidden Markov

Model (HMM) with states corresponding to assignments of face tracks to character names.

The face tracks are ordered according to the shot threading permutation, and as a re-

sult there are much fewer changes of character name along this ordering. Following

[Everingham et al., 2006], we detect on-screen speakers as follows: 1) locate mouth for

each face track using a mouth detector based on Viola-Jones, 2) compute a mouth mo-

tion score based on the normalized cross correlation between consecutive windows of the

mouth track, averaged over temporal segments corresponding to speech portions of the

screenplay. Finally we label the face tracks using Viterbi decoding for the Maximum a

Posteriori (MAP) assignment (see website for more details). We computed groundtruth

face names for one episode of LOST and compared our method against the following

baseline that does not use shot reordering: each unlabeled face track (without a detected

speaking character on screen) is labeled using the closest labeled face track in feature

46

P (b) k = 1 k = 2 k = 3 k = 9 k = 12
aligned 73/90 77/91 82/96 86/97 88/97
uniform 25/0 45/14 55/0 52/1 -/-

total time (s) < 0.1 < 0.1 0.1 5 68

Table 3.2: % F-score (first number) for scene boundary detection and % accuracy (second
number) for predicting scene label of shots (on 1 episode of LOST) as a function of the
memory width k used in the TSP, and the prior P (b). The case k = 1 corresponds to no
reordering at all. Line 1: P (b) informed by screenplay; line 2: P (b) uniform; line 3: total
computation time.

space (position of face track and color histogram). The accuracy over an episode of LOST

is 76% for mainly dialogue scenes and 66% for the entire episode, as evaluated against

groundtruth. The baseline model based using nearest neighbor performs at resp. 43% and

39%. The next chapters will present more elaborate and accurate models for character

naming.

3.6.5 Retrieval of actions in videos

We consider a query-by-action verb retrieval task for 15 query verbs across 10 episodes

of LOST, see figure 3.10. The screenplay is parsed into verb frames (subject-verb-object)

with pronoun resolution, as discussed earlier. Each verb frame is assigned a temporal in-

terval based on time-stamped intervening dialogues and tightened with nearby shot/scene

boundaries. Queries are further refined to match the subject of the verb frame with a

named character face. We report retrieval results as follows: for each of the following

action verbs, we measure the number of times (out of 10) the retrieved video snippet cor-

rectly shows the actor on screen performing the action (we penalize for wrong naming):

close eyes (9/10), grab (9/10), kiss (8/10), kneel (9/10), open (9/10), stand (9/10), cry

(9/10), open door (10/10), phone (10/10), point (10/10), shout (7/10), sit (10/10), sleep

(8/10), smile (9/10), take breath (9/10). The average is 90/100. Two additional queries are

shown in figure 3.1 along with the detected and identified characters. We are creating a

47

Figure 3.8: Movie at a glance: scene segmentation-alignment and shot reordering for an
episode of LOST (only a portion shown for readability). Scene boundaries are in red,
together with the set of characters appearing in each scene, in blue.

Figure 3.9: Character naming using screenplay alignment and shot threading. Top 3 rows:
correctly named faces; bottom row: incorrectly named faces. We detect face tracks in
each shot and reorder them according to the shot threading permutation. Some face tracks
are assigned a name prior based on the alignment between dialogs and mouth motion. We
compute a joint assignment of names to face tracks using an HMM on the reordered face
tracks.

48

large dataset of retrieved action sequences combined with character naming for improved

temporal and spatial localization, see www.seas.upenn.edu/˜timothee.

3.7 Conclusion

In this work we have addressed basic elements of movie structure: hierarchy of scenes and

shots and continuity of shot threads. We believe that this structure can be useful for many

intelligent movie manipulation tasks, such as semantic retrieval and indexing, browsing

by character or object, re-editing and many more. We plan to extend our work to provide

more fine-grained alignment of movies and screenplay, using coarse scene geometry, gaze

and pose estimation.

49

www.seas.upenn.edu/~timothee

Figure 3.10: Top 10 retrieved video snippets for 15 query action verbs: close eyes, grab,
kiss, kneel, open, stand, cry, open door, phone, point, shout, sit, sleep, smile, take breath.
Please zoom in to see screenplay annotation (and its parsing into verb frames for the first
6 verbs).

50

Chapter 4

Learning from Ambiguously Labeled

Images

4.1 Introduction

We consider a weakly-supervised multiclass classification setting where each instance is

labeled ambiguously with more than one potential labels. A typical example arises in

photograph collections containing several faces per image and a caption that only spec-

ifies who is in the picture but not which name matches which face, see Figure 4.1. As

a further motivation, consider Figure 4.2, which shows another common setting where

we can obtain plentiful but ambiguously labeled data: videos and screenplays. Using a

screenplay, we can tell who is in the scene, but for every face in the images, the person’s

identity is ambiguous. The social network of characters sharing a scene in a season of

LOST is shown in Figure 4.3.

Learning accurate face and object recognition models from such imprecisely annotated

images and videos can improve many applications, including image retrieval and summa-

rization. In this and the next two chapters, we investigate theoretically and empirically

when effective learning from this weak supervision is possible.

51

Figure 4.1: Weak supervision from photograph collections: examples of web images with
multiple people present. Left caption: “George Lucas and Harrison Ford”. Right caption:
“Hillary Clinton, Secretary of State of Barack Obama ?”

Partially Supervised Learning

To put the ambiguous labels learning problem into perspective, it is useful to lay out

several related learning scenarios, see figure 2.2:

• In semi-supervised learning, the learner has access to a set of labeled examples as

well as a set of unlabeled examples.

• In multiple-instance learning, examples are not individually labeled but grouped

into sets which either contain at least 1 positive example, or only negative examples.

• In multi-label learning, each example is assigned multiple labels (for example at-

tributes), all of which are correct.

• Finally, in our setting of ambiguous labeling, each example again is supplied with

multiple potential labels, only one of which is correct. A formal definition is given

in Sec. 4.3.

There have been several papers that addressed the ambiguous label

framework. [Hullermeier and Beringer, 2006] proposes several non-parametric,

instance-based algorithms for ambiguous learning based on greedy heuristics.

52

Figure 4.2: Examples of frames and corresponding parts of the script from the TV series
LOST. From aligning the script to the video, we have 2 ambiguous labels for each person
in the 3 different scenes.

[Jin and Ghahramani, 2002] uses expectation-maximization (EM) algorithm with a

discriminative log-linear model to disambiguate correct labels from incorrect. Addition-

ally, these papers only report results on synthetically-created ambiguous labels and rely

on iterative non-convex optimization.

In this work, we provide intuitive assumptions under which we can expect learning to

succeed in identifying the correct label for each instance. We identify conditions under

which ambiguously labeled data is sufficient to compute a useful upper bound on the true

labeling error. We propose a simple, convex formulation based on this analysis and show

how to extend general multi-class loss functions to handle ambiguity. We show that our

method significantly outperforms several strong baselines on a large dataset of pictures

from newswire and a large video collection.

53

Figure 4.3: Co-occurrence graph of the top characters across 16 episodes of LOST. Larger
edges correspond to a pair of characters appearing together more frequently.

4.2 Related Work

A more general multi-class setting is common for images with captions (for example, a

photograph of a beach with a palm and a boat, where object locations are not specified).

[Duygulu et al., 2002, Barnard et al., 2003] show that such partial supervision can be suf-

ficient to learn to identify the object locations. The key observation is that while text and

images are separately ambiguous, jointly they complement each other. The text, for in-

stance, does not mention obvious appearance properties, but the frequent co-occurrence of

a word with a visual element could be an indication of association between the word and

a region in the image. Of course, words in the text without correspondences in the image

and parts of the image not described in the text are virtually inevitable. The problem of

naming image regions can be posed as translation from one language to another. Barnard

et al. [Barnard et al., 2003] address it using a multi-modal extension to mixture of latent

Dirichlet allocation.

54

Names and Faces

The specific problem of naming faces in images and videos using text sources has been ad-

dressed in several works [Satoh et al., 1999, Berg et al., 2004, Gallagher and Chen, 2007,

Everingham et al., 2006]. There is vast literature on fully supervised face recogni-

tion, which is out of the scope of this thesis. Approaches relevant to ours include

[Berg et al., 2004] which aims at clustering face images obtained by detecting faces from

images with captions. Since the name of the depicted people typically appears in the cap-

tion, the resulting set of images is ambiguously labeled, if more than one name appears

in the caption. Moreover, in some cases the correct name may not be included in the set

of potential labels for a face. The problem can be solved by using unambiguous images

to estimate discriminant coordinates for the entire dataset. The images are clustered in

this space and the process is iterated. Gallagher and Chen [Gallagher and Chen, 2007] ad-

dress the similar problem of retrieval from consumer photo collections, in which several

people appear in each image which is labeled with their names. Instead of estimating a

prior probability for each individual, the algorithm estimates a prior for groups using the

ambiguous labels. Unlike [Berg et al., 2004], the method of [Gallagher and Chen, 2007]

does not handle erroneous names in the captions.

In work on video, a wide range of cues was used to help supervise the data, including:

using captions or transcripts [Everingham et al., 2006], using sound [Satoh et al., 1999] to

obtain the transcript, using clustering based on clothing within scenes to group instances

[Ramanan et al., 2007]. Most of the methods involve either procedural, iterative reassign-

ment schemes or non-convex optimization.

4.3 Formulation

In the standard supervised multiclass setting, we have labeled examples S = {(xi, yi)mi=1}
from an unknown distribution P (x, y) where x ∈ X is the input and y ∈ {1, . . . , L} is the

class label. In the partially supervised setting we investigate, instead of an unambiguous

55

single label per instance we have a set of labels, one of which is the correct label for the

instance. We will denote the sample as S = {(xi, yi, Zi)mi=1} from an unknown distribu-

tion P (x, y, Z) = P (x, y)P (Z | x, y) where Zi ⊆ {1, . . . , L} \ yi is a set of additional

labels. We will denote Yi = yi ∪ Zi as the ambiguity set actually observed by the learn-

ing algorithm. Clearly, our setup generalizes the standard semi-supervised setting where

some examples are labeled and some are unlabeled: if the ambiguity set Yi includes all

the labels, the example is unlabeled and if the ambiguity set contains one label, we have a

labeled example. We consider the middle-ground, where all examples are partially labeled

as described in our motivating examples and analyze assumptions under which learning

can be guaranteed to succeed.

Consider a very simple ambiguity pattern that makes learning impossible: L = 3,

|Zi| = 1 and label 1 is present in every set Yi. Then we cannot distinguish between the

case where 1 is the true label of every example or the case where it is not a label of any

example. More generally, if two labels always co-occur when present in Y , we cannot tell

them apart. In order to learn from ambiguous data, we need to make some assumptions

about the joint distribution of P (Z | x, y). Below we will make an assumption that ensures

some diversity in the ambiguity set. Looking at Figure 4.3, we can see that the distribution

of ambiguous pairs is diverse enough to prevent the aforementioned scenario.

4.3.1 The model and loss functions

We assume a mapping f(x) : X 7→ <d from inputs to d real-valued features and a multi-

linear classifier g(x) : X 7→ <L with L components,

ga(x) = wa · f(x),

one for each label a ∈ {1, . . . , L}, to which we will refer to as class scores. The prediction

of the classifier is determined by:

g∗(x) = arg max
a
ga(x),

56

the highest scoring label according to ga (we assume that ties are broken arbitrarily, for

example, by selecting the label with smallest index a). Hence the classifier is parametrized

by d× L weights wai , one for each feature-and-class pair.

Many formulations of fully-supervised multiclass learning have been proposed based

on minimization of convex upper bounds on risk, usually, the 0/1 loss [Zhang, 2004]:

L01(g(x), y) = 1(g∗(x) 6= y).

In addition to the standard 0/1 loss, we define the ambiguous 0/1 loss:

L01(g(x), Y) = 1(g∗(x) /∈ Y).

4.3.2 Connection between ambiguous loss and standard 0/1 loss

An obvious observation is that the ambiguous loss is an underestimate of the true loss.

However in the ambiguous learning setting we would like to minimize the 0/1, with access

only to the ambiguous loss. Therefore we need a way to bound the 0/1 loss with the

ambiguous loss. The following definition defines a measure of the hardness of learning

under ambiguous supervision.

Definition : ambiguity degree ε(P) of a distribution We define the ambiguity degree

ε(P) of a distribution P (x, y, Z) as:

ε(P) = sup
x∈X ;y,a∈{1,...,L}

P (a ∈ Z | x, y). (4.1)

In words, ε(P) corresponds to the maximum probability of an extra label co-occurring

with a true label y, over all labels and examples. Let us consider several extreme cases:

when ε(P) = 0, Z = ∅ with probability one, and we are back to standard supervised

learning case, with no ambiguity. When ε(P) = 1, some extra label consistently co-occurs

with a true label y on an example x and we cannot tell them apart: no learning is possible

for this example. For a fixed ambiguity set size |Z|, the smallest possible ambiguity degree

is achieved for the uniform case: ε(P) = |Z|/(L − 1). Intuitively, the best case scenario

57

for ambiguous learning corresponds to a distribution with high conditional entropy for

P (Z|x, y).

The following proposition shows we can bound the (unobserved) 0/1 loss by the (ob-

served) ambiguous loss, allowing us to approximately minimize the standard loss with

only access to the ambiguous one. The tightness of the approximation directly relates to

the ambiguity degree.

Proposition 4.3.1 For any classifier g and distribution P with ε(P) < 1,

EP [L01(g(x), Y)] ≤ EP [L01(g(x), y)] ≤ 1

1− ε(P)
EP [L01(g(x), Y)] (4.2)

Note, the second bound is tight, as can be shown by considering the uniform case with

a fixed ambiguity size Z and P (a ∈ Z | x, y) = |Z|/(L− 1).

Proof The first inequality comes from the fact that g∗(x) /∈ Y =⇒ g∗(x) 6= y. For the

second inequality, fix an x ∈ X and define EP [· | x] as the expectation with respect to

P (Y | x) = P (y, Z | x).

EP [L01(g(x), Y)|x] = P (g∗(x) 6∈ Y | x)

= P (y 6= g∗(x), g∗(x) 6∈ Z | x)

=
∑

a6=g∗(x)
P (y = a | x) (1− P (g∗(x) ∈ Z | x, y = a))︸ ︷︷ ︸

≥1−ε(P)

≥
∑

a6=g∗(x)
P (y = a | x)(1− ε(P))

= (1− ε(P))EP [L01(g(x), y)|x]

Hence, EP [L01(g(x), y)|x] ≤ 1
1−ε(P)

EP [L01(g(x), Y)|x] for any x. We conclude by taking

expectation over x. �

4.3.3 Robustness to outliers

One potential issue with proposition 4.3.1 is that unlikely pairs x, y might force ε to be

large, making the bound very loose. We show we can refine the notion of ambiguity degree

ε(P) by excluding such pairs.

58

Definition (ε, δ)-ambiguous distribution. Define a distribution P to be (ε, δ)-ambiguous

if there is a subset of the space A ⊆ X × {1, . . . , L} with probability mass at least 1− δ,
(i.e. P ((x, y) ∈ A) ≥ 1− δ), where

sup
(x,y)∈A,a∈{1,...,L}

P (a ∈ Z | x, y) ≤ ε

Note, in the extreme case ε = 0, this corresponds to standard semi-supervised learning,

where δ-proportion of examples are unambiguously labeled, and 1 − δ are (potentially)

fully unlabeled.

This definition allows us to bound the 0/1 loss even in the case when some unlikely

pair x, y with probability≤ δ would make the ambiguity degree arbitrarily large. Suppose

we mix an initial distribution with small ambiguity degree, with an outlier distribution with

large overall ambiguity degree. The following proposition shows that the bound degrades

only by an additive amount, which can be interpreted as a form of robustness to outliers.

Proposition 4.3.2 For any classifier g and (ε, δ)-ambiguous P (Z | x, y),

EP [L01(g(x), y)] ≤ 1

1− εEP [L01(g(x), Y)] + δ.

Proof We split up the expectation in two parts:

EP [L01(g(x), y)] = EP [L01(g(x), y)|(x, y) ∈ A](1− δ) + EP [L01(g(x), y)|(x, y) 6∈ A]δ

≤ EP [L01(g(x), y)|(x, y) ∈ A](1− δ) + δ

≤ 1

1− εEP [L01(g(x), Y)|(x, y) ∈ A](1− δ) + δ

We applied proposition 4.3.1 in the last step. Using a symmetric argument,

EP [L01(g(x), Y)] = EP [L01(g(x), Y)|(x, y) ∈ A](1− δ) + EP [L01(g(x), Y)|(x, y) 6∈ A]δ

≥ EP [L01(g(x), Y)|(x, y) ∈ A](1− δ)

Finally we obtain EP [L01(g(x), y)] ≤ 1
1−εEP [L01(g(x), Y)] + δ �

59

4.3.4 Label-specific recall bounds

In real settings such as in our movie experiments we observe that certain subsets of labels

are harder to disambiguate than others. We can further tighten our bounds between am-

biguous loss and standard 0/1 loss if we consider label specific information. We define

the label-specific ambiguity degree εa(P) of a distribution (with a ∈ {1, . . . , L}) as:

εa(P) = sup
x∈X ;a′∈{1,...,L}

P (a′ ∈ Z | x, y = a)

We can show the label-specific analog of proposition 4.3.1:

Proposition 4.3.3 For any classifier g and distribution P with εa(P) < 1,

EP [L01(g(x), y) | y = a] ≤ 1

1− εaEP [L01(g(x), Y) | y = a].

where we see that εa bounds per-class recall.

Proof Fix an x ∈ X (such that P (y = a|x) > 0) and define EP [· | x, y = a] as the

expectation with respect to P (Z | x, y = a). We consider two cases:

a) if g∗(x) = a,

EP [L01(g(x), Y) | x, y = a] = P (g∗(x) 6= y, g∗(x) 6∈ Z | x, y = a) = 0

b) if g∗(x) 6= a,

EP [L01(g(x), Y) | x, y = a] = P (g∗(x) 6∈ Z | x, y = a)

= 1− P (g∗(x) ∈ Z | x, y = a) ≥ 1− εa

We conclude by taking expectation over x:

EP [L01(g(x), Y) | y = a] = P (g∗(x) = a|y = a)EP [L01(g(x), Y) | g∗(x) = a, y = a]

+ P (g∗(x) 6= a|y = a)EP [L01(g(x), Y) | g∗(x) 6= a, y = a]

≥ 0 + P (g∗(x) 6= a | y = a) · (1− εa)
= (1− εa) · EP [L01(g(x), y) | y = a] �

60

These bounds give a strong give a strong connection between ambiguous loss and real

loss, which allows us to approximately minimize the expected real loss by minimizing (an

upper bound on) the ambiguous loss.

4.4 A convex learning formulation

We build our formulation on a simple and general multiclass scheme that combines convex

binary losses ψ(·) : < 7→ <+ on individual components of g to create a multiclass loss.

For example, we can use hinge ψ(u) = max(0, 1 − u), exponential ψ(u) = exp(−u) or

logistic loss ψ(u) = log(1 + exp(−u)), see figure 2.3. In particular, we assume a type of

one-against-all scheme for the supervised case:

Lψ(g(x), y) = ψ(gy(x)) +
∑
a6=y

ψ(−ga(x)). (4.3)

A classifier g is selected by minimizing the empirical loss on the sample in some function

class for g (or by adding a regularization term) to penalize complex models. This form

of the multiclass loss is infinite-sample consistent. Informally, this means that empirical

loss minimizer achieves Bayes risk if as the number of samples m grows to infinity, the

function class for g grows appropriately fast to be able to approximate any function fromX
to <L and ψ(u) satisfies the following conditions: (1) ψ(u) is convex, (2) bounded below,

(3) differentiable and (4) ψ(u) < ψ(−u) when u > 0 (Theorem 9 in [Zhang, 2004]).

These conditions are satisfied, for example, for the exponential, logistic and squared hinge

loss max(0, 1− u)2.

4.4.1 Our convex loss function for ambiguously labeled data

In the partial supervision setting, instead of an unambiguous single label y per instance

we have a set of labels Y , one of which is the correct label for the instance. We propose

61

the following loss function:

Lψ(g(x), Y) = ψ

(
1
|Y |

∑
a∈Y

ga(x)

)
+
∑
a/∈Y

ψ(−ga(x)) (4.4)

Note that if the set Y contains a single label y, then the loss function reduces to the

regular multiclass loss. When Y is not a singleton, then the loss function will drive up the

average of the scores of the labels in Y . If the score of the correct label is large enough, the

other labels in the set do not need to be positive. This tendency alone does not guarantee

that the correct label has the highest score. However, we show in (4.8) that Lψ(g(x), Y)

upperbounds L01(g(x), Y) whenever ψ(·) is an upper bound on the 0/1 loss.

Of course, minimizing an upperbound on the loss does not always lead to sensible

algorithms. We show next that our convex relaxation offers a tighter upperbound to the

ambiguous loss compared to a more straightforward multi-label approach.

4.4.2 Comparison vs naive, multi-label approach

The “naive” model treats each example as taking on multiple correct labels, which implies

the following loss function

Lnaiveψ (g(x), Y) =
∑
a∈Y

ψ (ga(x)) +
∑
a/∈Y

ψ(−ga(x)) (4.5)

One reason we expect our loss function to outperform the naive approach is that we obtain

a tighter convex upper bound on L01. Recall our loss function, in comparison:

Lψ(g(x), Y) = ψ

(
1

|Y |
∑
a∈Y

ga(x)

)
+
∑
a/∈Y

ψ(−ga(x)) (4.6)

Let us also define

Lmaxψ (g(x), Y) = ψ

(
max
a∈Y

ga(x)

)
+
∑
a/∈Y

ψ(−ga(x)) (4.7)

62

which is not convex. Under the usual conditions that ψ is a convex, decreasing upper

bound of the step function (e.g., square hinge loss, exponential loss, and log loss with

proper scaling), the following inequalities hold:

Proposition 4.4.1 (comparison between ambiguous losses)

L01 ≤ Lmaxψ ≤ Lψ ≤ Lnaiveψ (4.8)

Proof For the first inequality, if g∗(x) ∈ Y , Lmaxψ (g(x), Y) ≥ 0 = L01(g(x), Y). Other-

wise we have two cases with a∗ = g∗(x) /∈ Y :

a) if ga∗(x) ≤ 0, maxa∈Y ga(x) ≤ 0 by definition of g∗(x) so ψ(maxa∈Y ga(x)) ≥ 1

b) if ga∗(x) > 0, ψ(−ga∗(x)) ≥ 1

In both cases, Lmaxψ (g(x), Y) ≥ 1 = L01(g(x), Y).

The second inequality comes from the fact that

max
a∈Y

ga(x) ≥ 1

|Y |
∑
a∈Y

ga(x)

For the third inequality, using the convexity of ψ,

ψ

(
1

|Y |
∑
a∈Y

ga(x)

)
≤ 1

|Y |
∑
a∈Y

ψ(ga(x)) ≤
∑
a∈Y

ψ(ga(x)) �

This shows that our loss Lψ is a tighter approximation to L01 than Lnaiveψ , as illustrated

in figures 4.4 and 4.5. What’s more, the bound is non-trivial: when ga(x) = constant

over a ∈ Y , we have

ψ

(
max
a∈Y

ga(x)

)
= ψ

(
1

|Y |
∑
a∈Y

ga(x)

)
=

1

|Y |
∑
a∈Y

ψ (ga(x))

To gain additional intuition on why our proposed loss (4.4) is better than the naive

loss (4.5): For an input x with ambiguous label set (a, b), our model only encourages

the sum ga(x) + gb(x) to be large, allowing the correct score to be positive and the

extraneous score to be negative (e.g., ga(x) = 2, gb(x) = −1). In contrast, the naive

model encourages both ga(x) and gb(x) to be large.

63

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

Figure 4.4: For a strictly convex loss such as the exp-loss (blue curve), the ambiguous
loss provides a better approximation to the max-loss than the naive loss. The red segment
corresponds to the chord with points g1, g2, the dashed line corresponds to ψ(1

2
(g1 + g2)),

the dotted line corresponds to ψ(max(g1, g2)), and the black line corresponds to 1
2
(ψ(g1)+

ψ(g2)).

4.4.3 Asymptotic bounds on the convex relaxation

It is possible to identify reasonable conditions on P (x, y, Z) under which our loss will be

infinite-sample consistent, for example the case where P (y | x) is deterministic.

To derive concrete generalization bounds on multiclass error for our case we define

our function class for g as G = {g : ∀a, ||wa||2 ≤ 1} and use squared hinge loss ψ(u) =

max(0, 1− u)2. The corresponding margin-based loss is defined via a truncated, rescaled

version of ψ:

φγ(u) =

1 if u ≤ 0,

(1− u/γ)2 if 0 < u ≤ γ,

0 if u > γ.

.

Using Corollary 15 from [Bartlett and Mendelson, 2002], we can show:

Proposition 4.4.2 Assume ||f(x)||2 ≤ ∞, ∀X . For any sample S, with probability of at

64

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ours

max

naive

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ours

max

naive

Figure 4.5: Our loss, (4.4) provides a tighter upperbound than the naive loss (4.5) on the
non-convex function (4.7). Left: plots of ψ(1

2
(g1 + g2)) (ours), ψ(max(g1, g2)) (max),

1
2
(ψ(g1) + ψ(g2)) (naive), as a function of g1 ∈ [−2, 2] (with g2 = 0 fixed). Right: same,

with g2 = −g1. In each case we use the square hinge loss for ψ, assume Y = {1, 2}, and
drop the negative terms.

least 1− η, every g ∈ G:

EP [L01(g(x), Y)] ≤ ES[Lφγ (g(x), Y)] +
c1L

2

γm
·
√∑

x∈S
||f(x)||22 + c2

√
L2 ln(2/η)

m
,

where where c1 and c2 are constants.

Using proposition 4.4.2 and proposition 4.3.1, we can derive bounds on the true loss

EP [L01(g(x), y)] from purely ambiguous data.

4.5 Algorithm and implementation details

Our ambiguous learning formulation is flexible and we can derive many alternative al-

gorithms depending on the choice of the binary loss ψ(u), the regularization, and the

optimization method. We describe below a linear programming with hinge loss and L1

65

regularization, a Support Vector Machine variant with square hinge loss and L2 regular-

ization, and a boosting algorithm with exponential loss. We compare those alternatives

with several baselines in our experiments with in the newswire image naming task. First

we show how to reduce ambiguous multiclass learning to standard binary classification.

4.6 Reduction of ambiguous learning to standard binary

classification

In order to minimize (4.4) using off-the-shelf optimization software packages, we first

reformulate it as a standard binary classification problem. We can unify the two types of

terms in (4.4) as linear combinations of m · L vectors ¯̄xia ∈ <d·L:

¯̄xia = δa ⊗ f(x) =
[

0d ; · · · ; f(x) ; · · · ; 0d

]
(4.9)

with δa,a′ = 1(a = a′) the kronecker symbol and ⊗ the kronecker product: ¯̄xia has

d · (L − 1) zero elements (we used matlab notation “;” to denote vertical concatenation).

We now replace each input (x, Y) by the following 1+L−|Y | fictitious inputs {(x̄j, ȳj)}j:

{(x̄j, ȳj)}j = {(1

|Y |
∑
a∈Y

¯̄xia,+1)} ∪ {(¯̄xia,−1)}a6∈Y (4.10)

For shortcut, we can write x̄j =
∑
ujia¯̄xia the linear decomposition of x̄ (uj contains either

one or Y non-zero elements).

The convex ambiguous loss (4.4) simplifies into a standard binary classification prob-

lem:

Lψ(g(x), Y) =
∑
j

ψ(w · x̄jȳj) (4.11)

where w ∈ <d·L is the combined weight vector to learn:

w =
[
· · · ; wa ; · · ·

]
(4.12)

66

4.6.1 Ambiguous loss with Linear or Quadratic Programming

Using Lp regularization (p = 1 or p = 2), and hinge (p′ = 1) or square hinge loss (p′ = 2)

as binary loss ψ(u) = max(0, 1− u)p
′ (the square loss is also possible), the optimization

problem for ambiguous learning becomes:

min
w
||w||p + C

∑
j

max(0, 1−w · x̄jȳj)p′ (4.13)

which can be converted into a Linear Program (p = p′ = 1) or a Quadratic Program. In

canonical form, the program has O(d · L) variables, O(m · L) constraints, and O(mdL)

non-zero elements (it is sparse). The regularization parameter C can be set by K-fold

cross-validation: an interesting point to notice is that even though the original program is

not fully supervised, the transformed one can be considered as fully supervised, allowing

the use of standard supervised learning techniques such as cross-validation. The result-

ing Linear or Quadratic Program can be solved with general optimization tools such as

MOSEK [MOSEK ApS,]. However, one can achieve better scalability by using more

specialized solvers as we describe next.

4.6.2 Large scale Ambiguous learning with L2 loss linear Support

Vector Machine

The use use of square hinge loss and L2 regularization (p = p′ = 2) allows us to have a

differentiable objective in the primal, which can be rewritten using slack variables ξj as:

min
w

1

2
||w||22 + C||ξ||22 (4.14)

s.t. ȳjw · x̄j ≥ 1− ξj (4.15)

We solve the primal using a trust region Newton method described in[Lin et al., 2008],

and use the off-the-shelf implementation [Fan et al., 2008] in our experiments. Note that

the matrix (x̄j)j is sparse, containing a total of O(mdL) non-zero elements. This allows

us to tackle large scale problems with thousands of instances and features, and hundreds

of labels.

67

4.6.3 Kernelized Ambiguous loss using Support Vector Machine

We can extend the ambiguous learning framework to the case where the (nonlinear) map-

ping f(x) : X 7→ <d maps to a high, possibly infinite dimensional space. Note, the

mapping is on the original variable x, not the fictitious variable x̄ which requires a vector

input, and so we cannot use directly the standard SVM formulation on x̄. We suppose we

are given a kernel K : X × X 7→ < such that xi · xi′ = K(xi, x
′
i). We use here the hinge

loss, L2 regularization and an optional additional bias term b for similarity with the SVM

framework. The optimization problem for ambiguous learning becomes:

min
w,b

1

2
||w||22 + C

∑
j

ξj (4.16)

s.t. ȳj(w · x̄j − b) ≥ 1− ξj, ξj ≥ 0 (4.17)

whose dual is:

max
w

∑
j

αj − 1

2

∑
j,j′

αjαj′ȳjȳj′x̄j · x̄j′ (4.18)

s.t. 0 ≤ αj ≤ C,
∑
j

αjȳj = 0 (4.19)

Note, without the extra bias term, the dual would be replaced by removing the equality

constraint. We can compute the inner product in the dual as:

x̄j · x̄′j′ =
∑
i,i′,a,a′

ujiau
j′

i′a′
¯̄xia · ¯̄xi′a′ (4.20)

=
∑
i,i′,a,a′

ujiau
j′

i′a′δa,a′f(xi) · f(xi′) (4.21)

=
∑
i,i′,a,a′

ujiau
j′

i′a′δa,a′K(xi, x
′
i) (4.22)

where x̄j =
∑
ujia¯̄xia is the linear decomposition of x̄j , and likewise for x̄j′ . Note that,

given the form of the coefficients uj , the resulting Gram matrix (x̄j ·x̄′j′)j,j′ , defining a new

kernel K̄(x̄j, x̄j′), is sparse, and we can show it has at mostm2 ·L elements. When each Y

contains only 1 element, the Gram matrix is bloc diagonal with one bloc corresponding to

68

one label, and we can solve the optimization for each label independently which amounts

to standard one-versus-all multi-class SVM. Otherwise, in the general case we can plug

in K̄(x̄j, x̄j′) (or a functional version of it) directly into an off-the-shelf dual based SVM

solver.

4.6.4 Ambiguous loss with feature selection using boosting

We also present (and experiment with, later) a boosting variant of ambiguous learning,

allowing us to incorporate feature selection as part of learning. We consider the case

ψ(x) = exp(−x), although this can be extended to other losses. We take a second order

Taylor expansion of the lossLψ(g(x), Y). See Algorithm 2 for details, which is a variant of

GentleBoost. The updates of the algorithm are similar to the standard multiclass boosting,

but keeps a combined weight for all the ambiguous labels (zi in Algorithm 2).

Algorithm 2 Ambiguous boosting

1: Initialize weights: zi = 1 ∀i, zi,a = 1 ∀i, a /∈ Yi
2: for t = 1 . . . T do
3: for a = 1 . . . L do
4: Fit the parameters of each weak classifier u to minimize the second-order

Taylor approximation of the cost function with respect to the ath classifier:

1

2

∑
i

[
zi · 1(a ∈ Yi)(u(xi)− 1)2 + zi,a · 1(a /∈ Yi)(u(xi) + 1)2

]
+constant

5: end for
6: Choose the combination of u, a with lowest residual error.
7: Update ga(x) = ga(x) + u
8: for i = 1 . . .m do
9: if a ∈ Yi then

10: zi = zi · exp(−u(xi))
11: else
12: zi,a = zi,a · exp(u(xi))
13: end if
14: end for
15: Normalize z to sum to 1.
16: end for

69

4.7 Transductive analysis

We analyze the ambiguous loss from the point of view a a finite sample. We show we can

have guarantees on disambiguating two instances under fairly reasonable assumptions,

and generalize this result to obtain a number of bounds on the disambiguation error rate,

each making some assumption on the distribution of ambiguous labels.

Example Consider a dataset of two points, xi, xj , with label sets {1, 2}, {1, 3}, respec-

tively and suppose that the total number of labels is 3. The objective function is given

by:

ψ(
1

2
(g1(xi) + g2(xi))) + ψ(−g3(xi)) + ψ(

1

2
(g1(xj) + g3(xj))) + ψ(−g2(xj))

Suppose the correct labels are 1, 1. It is clear that without further assumptions about xi

and xj we cannot assume that the optimal solution will predict the right label. However,

if f(xi) and f(xj) are close, it should be intuitively clear that we should be able to deduce

that the label of the two examples is 1.

A natural question is under what conditions on the data will this loss function produce

a labeling that is consistent with groundtruth. We provide an analysis under several (fairly

restrictive but plausible) assumptions.

Good Neighbor Assumption We assume that each instance has a neighbor with the same

correct label at most ε away in feature space:

∀xi ∈ S ∃xj ∈ S : ||f(xi)− f(xj)|| ≤ ε , y∗i = y∗j , i 6= j

where y∗i , y
∗
j are the correct labels for the xi, xj , and || · || is an arbitrary norm.

Note that this does not mean that the nearest neighbor of each point has the same label.

Proposition 4.7.1 Suppose the objective is bounded by ψ(ε
2
) and ||wa||∗ ≤ 1 for every

class a, where || · ||∗ is the dual norm of || · || and ψ is a decreasing upperbound on the

step function. Consider xi, xj that are good neighbors and have different label sets of size

2: Yi 6= Yj , |Yi| = |Yj| = 2 . Then g(x) predicts the correct label for xi, xj .

70

Proof Without loss of generality, let Yi = {1, 2} and Yj = {1, 3}, so the correct label is

1. Note that the number of classes could be larger than 3. Since the objective is bounded

by ψ(ε
2
), and each term is positive, each term is also bounded by ψ(ε

2
). Consider two of

the terms: ψ(1
2
(g1(xi) + g2(xi))) < ψ(ε

2
) and ψ(−g2(xj)) < ψ(ε

2
), which implies:

1

2
(w1 · f(xi) + w2 · f(xi)) >

ε

2

−w2 · f(xj) >
ε

2

Combining the constraints, we obtain w1 ·f(xi) >
3ε
2

+w2 ·(f(xj)− f(xi)), which implies

w1 · f(xi) >
3ε

2
− ε =

ε

2
,

since xi, xj are ε-neighbors and ||w2||∗ ≤ 1. Similarly,

w2 · f(xi) = w2 · f(xj) + w2 · (f(xi)− f(xj)) < − ε
2

+ ε =
ε

2
(4.23)

Hence, w1 · f(xi) >
ε
2
> w2 · f(xi). The proof for w1 · f(xj) > w3 · f(xj) is the same �

The assumption about ambiguity set size can be relaxed but would require a stronger

assumption about the good neighbors and their sets. We have also assumed that we were

lucky and the good neighbors had different ambiguous label sets, which allowed us to de-

duce the correct label for both. In order to ensure that this happens with high probability,

we need to assume that the ambiguity sets for each instance are randomly generated and

uncorrelated. Learning under adversarial ambiguity is much harder. In practice, ambigu-

ity sets may be correlated, as we observe in our experiments with naming characters in

movies.

We generalize this result and obtain the following bounds on the probability of error

(again in the case where |Y |=2).

Proposition 4.7.2 (P(error)) Suppose ||wa||∗ ≤ 1,∀a, and, for ε > 0, define:

αε = ψ(ε/2) (4.24)

Bε(x) = {x′ 6= x : ||x′ − x|| ≤ ε, y[x] = y[x′], Y [x] 6= Y [x′]} (4.25)

Zε = {x : ∀x′ ∈ Bε(x),Lψ(x′, Y [x′]) ≥ αε} (4.26)

71

with y[x] (resp. Y [x]) the true label (resp. ambiguous label set) of x. We show that:

P (error) ≤ min
ε

1

αε

(
E[Lψ] +

E[|Bε|Lψ]

EZε [|Bε|]
)

(4.27)

Introducing pε = P (Bε(x) = ∅), we also show:

P (error) ≤ min
ε
pε + E[Lψ]

1 + ||Bε||∞
αε

(4.28)

In the dense sampling approximation, when the density |Bε(x)| = bε > 0 is constant

(over a range ε ∈ E) we also show:

P (error) ≤ min
ε∈E

2

αε
E[Lψ] (4.29)

Proof If Lψ(x, Y [x]) < αε and ∃x′ ∈ Bε(x) : Lψ(x′, Y [x′]) < αε, then L01(x, y[x]) = 0

(from proposition 4.7.1). Conversely, if L01(x, y[x]) = 1 then Lψ(x, Y [x]) ≥ αε or ∀x′ ∈
Bε(x) : Lψ(x′, Y [x′]) ≥ αε. It follows that:

P (error) ≤ P (Lψ(x, Y [x]) ≥ αε) + P (x ∈ Zε)

By Markov’s inequality, P (Lψ(x, Y [x]) ≥ αε) ≤ E[Lψ]/αε (since Lψ ≥ 0). Let m be the

number of instances x:

m · E[|Bε|Lψ] =
∑
x

|Bε(x)|Lψ(x, Y [x])

=
∑
x

∑
x′∈Bε(x)

Lψ(x, Y [x])

=
∑
x

∑
x′∈Bε(x)

Lψ(x′, Y [x′]) (by symmetry)

≥
∑
x∈Zε

∑
x′∈Bε(x)

Lψ(x′, Y [x′])

≥
∑
x∈Zε

∑
x′∈Bε(x)

αε

= αε|Zε|EZε [|Bε|]

Finally P (x ∈ Zε) ≤ E[|Bε|Lψ]/(αεEZε [|Bε|]).

72

For the second statement we just write: if L01(x, y[x]) = 1 then Lψ(x, Y [x]) ≥ αε or

Bε(x) = ∅ or x ∈ Z ′ε = {x ∈ Zε : Bε(x) 6= ∅}, yielding:

P (error) ≤ min
ε
pε +

1

αε

(
E[Lψ] +

E[|Bε|Lψ]

EZ′ε [|Bε|]
)

≤ min
ε
pε +

1

αε
(E[Lψ] + E[|Bε|Lψ])

≤ min
ε
pε + E[Lψ]

1 + ||Bε||∞
αε

.

For the third statement, E[|Bε|Lψ] = bεE[Lψ] and EZ′ε [|Bε|] = bε �

73

Chapter 5

Experiments for Learning with

Ambiguously Labeled Data

We apply our algorithm for ambiguous learning to several datasets, including standard

benchmarks from the UCI repository [Asuncion and Newman, 2007], a speaker iden-

tification task from audio extracted from movies, and a face naming task from Labeled

Faces in the Wild [Huang et al., 2007c]. In chapter 6 we also consider the challenging task

of naming characters in TV shows throughout an entire season. In each case the goal

is to correctly label faces/speech segments/instances from examples that have multiple

potential labels, as well as learn a model that can generalize to other unlabeled examples.

We first perform a series of controlled experiments to analyze the effect of the the

distribution of ambiguous labels on learning. In particular we are interested in the follow-

ing factors: size of ambiguous bags, proportion of instances which contain an ambiguous

bag, entropy of the ambiguity, distribution of true labels and number of true labels. We

also consider two learning scenarios: 1) transductive learning, where the task is to disam-

biguate the true label given an observed bag of labels, and 2) inductive learning (out-of-

sample prediction), where we learn a model on an ambiguously labeled dataset, and test

the model on a new set of examples which are completely unlabeled.

We compare our approach against a number of baselines, including a generative mode,

74

a discriminative maximum-entropy model, a naive model, two K-nearest neighbor models,

as well as models that ignore the ambiguous bags. We also propose and compare several

variations on our cost function.

We conclude with a comparative summary, analyzing our approach and the baselines

according to several criteria: accuracy, applicability, space/time complexity and running

time.

5.1 Baselines: description and implementation details

In the experiments, we compare our approach with the following baselines.

5.1.1 Random model

We define chance as randomly guessing between the possible ambiguous labels only.

Defining the (empirical) average ambiguous size to be E[|Y |] = 1
m

∑m
i=1 |Yi|, then the

error from the chance baseline is given by errorchance = 1− 1
E[|Y |] .

5.1.2 IBM Model 1

This generative model was originally proposed in [Brown et al., 1993] for machine trans-

lation, but we can adapt it to the ambiguous label case. In our setting, the conditional prob-

ability of an example x ∈ <d belonging to one of its ambiguous labels a ∈ Y is normally

distributed. We use the expectation-maximization (EM) algorithm to learn the parameters

of the Gaussians. There are 2d · L parameters in total, which are mean µa ∈ <d and

diagonal covariance matrix Σa = diag(σa), σa ∈ <d for each label (we avoid learning

the full covariance matrix, which overfits, is numerically unstable and makes the likeli-

hood unbounded). Compared to EM for standard Gaussian Mixture Models (GMM), each

75

example contributes to the sufficient statistics of only its set of possible labels.

P (x|θ) =
∑
a∈Y

P (x|a)P (a) (5.1)

θ = (µa, σa)a, P (x|a) ∼ N (µa, diag(σa)), P (a) ∼ Unif(Y) (5.2)

Since the prior P (a) is fixed, the log-likelihood L(x|θ) =
∑

i logP (xi|θ) is strictly con-

cave and EM will converge to the global optimum. As an implementation detail, we

initially experienced numerical instability in the E-step, which involves computing:

P (a|x) =
P (x|a)P (a)∑

a′∈Y P (x|a′)P (a′)
(5.3)

We fixed this by using the following formula to compute the denominator, with pa
def
=

log(P (x|a)) + log(P (a)) and p∗ = maxa∈Y pa:

log(
∑
a∈Y

P (x|a)P (a)) = p∗ + log(
∑

exp(pa − p∗)) (5.4)

This reduces the dynamic range in the exponent and avoids numerical overflow. Note, for

the same reasons, we compute log(P (x|a)) directly from µa, σa and avoid forming P (x|a)

explicitly.

5.1.3 Discriminative EM model

In [Jin and Ghahramani, 2002] the authors train a discriminative model with an EM pro-

cedure adapted for the ambiguous label setting. The discriminative model they use is a

maximum entropy model [Della Pietra et al., 1997]:

P (y|x, θ) ∝ exp(f(x, y) · θ) (5.5)

The model parameters θ are found by minimizing the KL divergence between P (y|x, θ)
and some (unknown) distribution over class labels P̂ (y|x) that reflects the ambiguous

labels (i.e.P (y|x, θ) = 0∀y 6∈ Y):

θ∗ = arg min
∑
i

∑
y∈Y

P̂ (y|xi) log

(
P̂ (y|xi)
P (y|xi, θ)

)
(5.6)

They propose two approaches:

76

• in the naive model (we refer to it as naive-KL, since we also introduce a different

naive model), P̂ (y|x) is uniform over ambiguous labels: P̂ (y|x) = 1
|Y | for y ∈ Y .

This gives rise to the following:

θ∗ = arg min
∑
i

1

|Yi|
∑
y∈Y

log

(
1

|Yi|P (y|xi, θ)
)

(5.7)

= arg max
∑
i

1

|Yi|
∑
y∈Y

log(P (y|xi, θ)) (5.8)

= arg max
∑
i

1

|Yi|
∑
y∈Y

exp(f(x, y) · θ)∑
y′ exp(f(x, y′) · θ) (5.9)

• in the discriminative EM-model, the label distribution P̂ (y|x) is not fixed, but

instead is iteratively estimated using an EM procedure, initialized with P̂ (y|x) uni-

form over the ambiguous labels. In the E-step, minimizing the KL divergence in

(5.10) w.r.t. P̂ (y|x) gives the following:

P̂ (y|x) =

P (y|x,θ)P

y′∈Y P (y′|x,θ) ∀y ∈ Y,

0 else
(5.10)

In the M-step, (5.10) is minimized w.r.t. θ, fixing P̂ (y|x). As an implementation de-

tail, we experienced slow convergence rate when optimizing for the M-step, which

has a form similar to (5.9). We implemented a conjugate gradient ascent to improve

convergence.

5.1.4 k-Nearest Neighbor

In the supervised case, the weighted k-Nearest Neighbor Classifier[Cover and Hart, 1967]

outputs the following function:

gk(x) = arg max
y

k∑
i=1

wi1(y = yi) (5.11)

where xi is the ith nearest-neighbor of x ∈ <d using Euclidian distance in <d, and wi

are a set of weights. Following [Hullermeier and Beringer, 2006], we adapt the k-Nearest

77

Neighbor Classifier to the ambiguous label setting as follows:

gk(x) = arg max
y∈Y

k∑
i=1

wi1(y ∈ Yi) (5.12)

We use two kNN baselines: kNN assumes uniform weights wi = 1 (model used in

[Hullermeier and Beringer, 2006]), and weighted kNN uses linearly decreasing weights

wi = k − i + 1, which suppresses dynamic range issues in the distances (compared to

alternatives in which the weights depend on the distances). As implementation details,

ties are broken randomly, and unless specified otherwise, we use k = 5 as was the case

in [Hullermeier and Beringer, 2006]. We also report some experiments searching over all

possible values of k, and number of PCA components when using principal components

as features.

5.1.5 Naive model

We introduce the following naive model (denoted naive) as another baseline, where we

train separate binary models for each label (using the same binary loss ψ(·) as in our

model) and treat ambiguous label sets as true binary labels for each class (i.e., the model

assumes that an exemplar can have two labels during training). The loss function on an

example (x, Y) is:

Lnaive
ψ (g(x), Y) =

∑
a∈Y

ψ(ga(x)) +
∑
a/∈Y

ψ(−ga(x)), (5.13)

After training, we predict the label with the highest score (in the transductive setting):

y = arg max
a∈Y

ga(x) (5.14)

As a comparison, our loss function is:

Lψ(g(x), Y) = ψ

(
1

Y

∑
a∈Y

ga(x)

)
+
∑
a/∈Y

ψ(−ga(x)) (5.15)

The parameters shared between our model and the naive model (choice of binary loss ψ(·),

regularization term and coefficient of regularization) are set in the same way for the two

models in our experiments, so as to have a fair comparison.

78

5.1.6 Supervised models

Finally we also consider two baselines that ignore the ambiguous label setting: these

model only use the examples that are unambiguously labeled. and discard the other ones.

The first one, denoted as supervised model, uses the following loss for an example (x, Y):

Lsupervised
ψ (g(x), Y) =

ψ(gy(x)) +
∑

a6=y ψ(−ga(x)), Y = {y}

0 |Y | > 1

(5.16)

Note, this collapses to the naive model and to our ambiguous learning model in the case

|Y | = 1 (no ambiguity). The second model, denoted as supervised kNN, is essentially

the same as (5.11) where ambiguously labeled examples have been discarded.

5.2 Variants of our approach

Our ambiguous learning model optimizes the following loss during training:

Lψ(g(x), Y) = ψ

(
1

Y

∑
a∈Y

ga(x)

)
+
∑
a/∈Y

ψ(−ga(x)) (5.17)

This is denoted as the mean model in our experiments. In order to get some intuition on

our approach, we also investigate the following sum and contrastive alternatives:

Lsum
ψ (g(x), Y) = ψ

(∑
a∈Y

ga(x)

)
+
∑
a/∈Y

ψ(−ga(x)) (5.18)

Lcontrastive
ψ (g(x), Y) =

∑
a′ /∈Y

ψ

(
1

Y

∑
a∈Y

ga(x)− ga′(x)

)
(5.19)

Note, in each case the term
∑

a∈Y g
a(x) appears inside the binary loss. When ψ(·) is the

hinge loss, the mean and sum model are very similar, but this is not the case for strictly

convex binary losses. The regularization coefficient C can be set using cross-validation

on the bag-level as we have explained. In our experiments, we observed that accuracy

was relatively insensitive to even large variations (several orders of magnitude) of C, and

unless specified otherwise we fixed C = 103 in all experiments.

79

Dataset # instances (m) # features (d) # labels (L) prediction task
UCI: dermatology 366 34 6 disease diagnostic

UCI: ecoli 336 8 8 site prediction
UCI: abalone 4177 8 29 age determination

FIW(10b) 500 50 10 (balanced) face recognition
FIW(10) 1456 50 10 face recognition

FIW(100) 3011 50 100 face recognition
LOST-audio 522 50 19 speaker id
TV+movies 10,000 50 100 face recognition

Table 5.1: Summary of datasets used in our experiments. The TV+movies experiments
are treated in chapter 6. Faces in the Wild (1) uses a balanced distribution of labels (first
50 images for the top 10 most frequent people).

5.3 Datasets and feature description

We describe below the different datasets used to report our experiments. The experiments

for automatic naming of characters in TV shows can be found in chapter 6. A concise

summary is given in table 5.1.

5.3.1 UCI Datasets

We selected three biology related datasets from the publicly available UCI repository

[Asuncion and Newman, 2007]: dermatology, ecoli, abalone. As a preprocessing step,

each feature was independently scaled to have zero mean and unit variance.

5.3.2 Faces in the Wild (FIW)

We experiment with different subsets of the publicly available Labeled Faces in the

Wild [Huang et al., 2007c] dataset. We use the images registered with funneling

[Huang et al., 2007b] (the registration is not perfect), and crop out the central part cor-

responding to the approximate face location, which we resize to 60x90, see figure 5.1. We

compute the corresponding eigenfaces[Turk and Pentland, 1991] by projecting the 60x90

80

Figure 5.1: Examples from Faces in the Wild dataset used in our experiments (one face is
shown for each of the top 10 most frequent labels).

grayscale images (treated as 5400x1 vectors) onto a 50 dimensional space using Principal

Components Analysis. We kept the features simple by design; more sophisticated part

based registration and representation and would further improve results as we will see

in chapter 6. In table 5.1, FIW(10b) extracts the first 50 images for each of the top 10

most frequent people (balanced label distribution); FIW(10) extracts all images for each

of the top 10 most frequent people (heavily unbalanced label distribution, with 530 hits

for George Bush and 53 hits for John Ashcroft); FIW(100) extracts up to 100 faces for

each of the top 100 most frequent people (again, heavily unbalanced label distribution).

5.3.3 Speaker Identification from Audio

We also investigate a speaker identification task based on audio in an uncontrolled en-

vironment. The audio is extracted from an episode of LOST (season 1, episode 5) and

is initially completely unaligned. Compared to recorded conversation in a controlled

environment, this task is more realistic and very challenging due a number of factors:

background noise, strong variability in tone of voice due to emotions, people shouting or

talking at the same time. After alignment (described next), our dataset is composed of 522

utterances (each one corresponding to a closed caption line), with 19 different speakers.

We describe below the details of the alignment, which produces a set speech segments

along with the corresponding spoken text and speaker id.

Alignment between audio and text. We used mplayer (http://www.mplayerhq.

hu/) to extract audio from the DVD, representing 45 minutes sampled at 48kHz. The

closed captions extracted from the DVD provide an initial guess to segment the audio

into speech segments. There are two main difficulties: (1) closed caption time stamps

81

http://www.mplayerhq.hu/
http://www.mplayerhq.hu/

often overlap temporally, resulting in multiple potential speakers for an audio segment,

and (2) the time stamp intervals are approximate, often covering a significant portion of

non-speech audio signal along with the actual utterance.

We address both those issues using forced alignment [Moreno et al., 1998,

Sjlander, 2003], which aligns each phoneme in the text to an audio interval. This requires

establishing one-to-one correspondence between transcription and speech, which we carry

out by merging closed caption lines that overlap in time, and extracting the audio from

the union of the corresponding time stamp intervals. We use the Hidden Markov Model

Toolkit (HTK) (http://htk.eng.cam.ac.uk/) to compute forced alignment. Ac-

curacy of the alignment at the phoneme level was rather poor, but in our case we mostly

care about coarse, sentence level alignment so as to segment speech from non-speech and

prevent overlap between different speakers. We measured accuracy of the forced align-

ment by manually groundtruthing audio boundaries for an entire episode of Lost. Results

in figure 5.2 show that we are 95% precise if we tolerate a±2 seconds incertitude over the

interval. Most of the errors come from strong background music or noise.

Alignment between audio, text and speaker. To obtain groundtruth, we use our aligned

screenplay and closed captions from chapter 3 to attach to each speech segment a speaker

id.

Feature representation. For each speech segment (typically between 1 and 4 sec-

onds) we extract standard voice processing audio features: pitch[Talkin, 1995], Mel-

Frequency Cepstral Coefficients (MFCC)[Mermelstein, 1976], Linear predictive coding

(LPC). For more details on the topic we refer the reader to [Proakis and Manolakis, 1996,

Schroeder, 2004]. This results in a total of 4,000 features, which we normalize to the range

[−1, 1] and then project onto 50 dimensions using PCA.

82

http://htk.eng.cam.ac.uk/

Figure 5.2: Forced alignment error rate at the sentence level. To evaluate the accuracy of
our forced alignment pipeline, we manually groundtruthed audio boundaries at the utter-
ance level (one line of closed captions) for an entire episode of Lost (season 1, episode
5). The plot shows the frequency of automatically recovered speech boundaries that fall
outside of the confidence interval (x-axis, in seconds) around the groundtruth boundary.

5.4 Controlled experiments

In order to assess the performance of our proposed approach for ambiguous learning, we

perform a series of controlled experiments in which follow the same protocol. In each

experiment, we vary a single parameter (size of ambiguous bags, number of ambiguous

bags, number and distribution of true labels, etc.) over a range of 10 values.

For the inductive experiments, we split randomly in half the instances into (1) am-

biguously labeled training set, and (2) unlabeled testing set. The ambiguous labels

in the training set are generated randomly according to different noise models which we

specify in each case. For each method and parameter setting, we report the average test

error rate over 20 trials after training the model on the ambiguous train set. We also re-

port the corresponding standard deviation as error bar in the plots. Note, in the inductive

setting we consider the test set is unlabeled, and so the classifier votes among all possible

83

labels:

y = arg max
a∈{1..L}

ga(x) (5.20)

For the transductive experiments, there is no test set; we report the error rate for dis-

ambiguating the ambiguous labels (also averaged over 20 trials corresponding to random

settings of ambiguous labels). The main differences with the inductive setting are: (1) the

model is trained on all instances and tested on the same instances; and (2) the classifier

votes only among the ambiguous labels, which is easier:

y = arg max
a∈Y

ga(x) (5.21)

We compare our approach (denoted as mean) against the baselines presented in sec-

tion 5.1: Chance, Model 1, Discriminative EM model, k-Nearest Neighbor, weighted k-

Nearest Neighbor, Naive model, supervised model, and supervised kNN. Note, in our

experiments the Discriminative EM model was much slower to converge than all the other

methods, and we only report the first series of experiments with this baseline (in figure

5.3).

Table 5.2 summarizes the different settings used in each experiment. We experiment

with 3 different noise models for ambiguous bags, parametrized by p, q, ε. p represents

the proportion of examples that are ambiguously labeled. q represents the number of

extra labels for each ambiguous example. ε represents the degree of ambiguity for each

ambiguous example (see definition 4.1).

Experiments with a boosting version of the ambiguous learning. We also experiment

with a boosting version of our algorithm, as presented in section 4.6.4. Results are shown

in figure 5.15, comparing our method with kNN and the naive method (also using boost-

ing). Despite the change in learning algorithm and loss function, the trends remain the

same.

84

Experiment fig induct. dataset parameter
ambiguity size 5.3 yes FIW(10b) p = 1, q ∈ [0, 0.9(L− 1)]
ambiguity size 5.4 yes Lost audio p = 1, q ∈ [0, 0.9(L− 1)]
ambiguity size 5.5 yes ecoli p = 1, q ∈ [0, 0.9(L− 1)]
ambiguity size 5.6 yes derma p = 1, q ∈ [0, 0.9(L− 1)]
ambiguity size 5.7 yes abalone p = 1, q ∈ [0, 0.9(L− 1)]

10 labels (unbalanced) 5.8 yes FIW(10) p = 1, q ∈ [0, 0.9(L− 1)]
100 labels (unbalanced) 5.9 yes FIW(100) p = 1, q ∈ [0, 0.9(L− 1)]
ambiguity size(trans.) 5.10 no FIW(10b) p = 1, q ∈ [0, 0.9(L− 1)]
of ambiguous bags 5.11 yes FIW(10b) p ∈ [0, 0.95], q = 2
degree of ambiguity 5.12 yes FIW(10b) p = 1, q = 2, ε ∈ [1/L, 1]
degree of ambiguity 5.13 no FIW(10b) p = 1, q = 2, ε ∈ [1/L, 1]

dimension 5.14 yes FIW(10b) p = 1, q = L−1
2
, d ∈ [1, .., 200]

Table 5.2: Summary of controlled experiments. We experiment with 3 different noise
models for ambiguous bags, parametrized by p, q, ε. p represents the proportion of ex-
amples that are ambiguously labeled. q represents the number of extra labels for each
ambiguous example. ε represents the degree of ambiguity for each ambiguous example
(see definition 4.1). L is the total number of labels. We study the effects of: (1) label noise
model and amount of noise, (2) dataset choice, (3) number and distribution of true labels,
(4) inductive vs transductive learning, (5) feature dimensionality

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.4

0.5

0.6

0.7

0.8

0.9

1

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

discriminative_EM

Figure 5.3: Please refer to table 5.2. Comparison on FIW(10b).

85

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

Figure 5.4: Please refer to table 5.2. Comparison on audio from Lost.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

Figure 5.5: Please refer to table 5.2. Comparison on ecoli.

86

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

Figure 5.6: Please refer to table 5.2. Comparison on dermatology.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

Figure 5.7: Please refer to table 5.2. Comparison on abalone.

87

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

Figure 5.8: Please refer to table 5.2. Using 10 labels (unbalanced).

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

Figure 5.9: Please refer to table 5.2. Using 100 labels (unbalanced).

88

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.4

0.5

0.6

0.7

0.8

0.9

1

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

Figure 5.10: Please refer to table 5.2. Using transductive learning.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.4

0.5

0.6

0.7

0.8

0.9

1

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

Figure 5.11: Please refer to table 5.2. Effect of # of ambiguous bags.

89

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.4

0.5

0.6

0.7

0.8

0.9

1

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

Figure 5.12: Please refer to table 5.2. Effect of ambiguity degree.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

Figure 5.13: Please refer to table 5.2. Effect of ambiguity degree (with transductive learn-
ing).

90

−50 0 50 100 150 200 250

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

chance

is_supervised

knn

knn_supervised

knn_weight

mean

model_one

naive

Figure 5.14: Please refer to table 5.2. Effect of dimensionality

5.5 Comparative Summary

How useful are ambiguously labeled examples compared to labeled examples?. One

of the most prominent observations is that the supervised models defined in section 5.1.6

(which ignore the ambiguously labeled examples) consistently perform worse than their

counterparts adapted for the ambiguous setting. For example, consider figure 5.11. A

model trained with nearly all examples ambiguously labeled (“mean” curve”, p = 95%)

performs as good as a model which uses 60% of fully labeled examples (“supervised”

curve, p = 40%). The same holds between the “kNN” curve at p = 95% and the “super-

vised kNN” curve at p = 40%.

Comparison between different approaches. We make the following observations:

• The naive model uniformly outperformed the other baselines in all but 3 experi-

ments (out of 12)

• Our proposed model uniformly outperformed all baselines in all but one experi-

ment (figure 5.6, with UCI: dermatology dataset), where it ranked second closely

91

Figure 5.15: We experiment with a boosting version of the ambiguous learning, and com-
pare to a boosting version of the naive baseline, as well as the kNN (searching over mul-
tiple values of k). We vary the total size of ambiguous bags, and plot accuracy as the
number of boosting rounds increases. The green horizontal lines correspond to the best
performance of the nearest neighbor method.

92

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

is_contrastive

mean

naive

sum

Figure 5.16: Variations on our loss function: we compare our mean model proposed in
chapter 4 with variations on the model defined in section 5.2. We also show the baseline
naive model. The setting is the same as for figure 5.11.

behind Model 1. In particular it always uniformly outperformed the naive model.

• Weighted kNN has a slight edge over kNN

• other than these, there is no clear additional ranking among methods that is consis-

tent across experiments

Comparison between variations of our approach. Figure 5.16 shows that variations on

our cost function have little effect in the transductive setting. In the inductive setting, other

experiments we performed show that the mean and sum version are still very similar, but

the contrastive version is worse.

In general it seems that models based on minimization of a convex loss function (naive

and different versions of our model) usually outperform the other models.

Factors that influence the error rate. As could be expected, p and q monotonously affect

the error rate: more ambiguity or larger ambiguous bags consistently increase error rate.

93

We also see that the ambiguity degree ε significantly affects error rate (even though the

total amount of ambiguity remains constant). Lastly, transductive setting is more affected

by the amount of ambiguity than the inductive setting (since final voting is among all

ambiguous labels in the transductive case).

Dataset considerations. Less understood is the effect of dataset parameters (number

of dimensions, number and distribution of labels, number of examples, type of features)

on the ambiguous learning. The relative ranking and gap in performance between the

different methods are affected by the choice of dataset.

94

Chapter 6

Learning with Ambiguously Labeled

Faces in Videos

We now return to our introductory motivating example, naming people in TV shows (see

figure 4.2). Our goal is to identify characters given ambiguous labels derived from the

screenplay. Our data consists of 100 episodes (75 hours) of LOST and CSI, from which

we extract ambiguously labeled faces to learn models of common characters. We used the

same features, learning algorithm and loss function as in section 5.3.2.

In our video naming task, we explain how we collected our dataset, and how to obtain

the ambiguous labels from automatically aligned screenplays. We explore several combi-

nations of existing and novel features and constraints to improve accuracy of naming, and

propose several metrics for analyzing performance. Finally we explain how we generate

videos containing episode-wide and series-wide labeled face tracks.

6.1 Data Collection

We adopt the following filtering pipeline, illustrated in figure 6.2, to extract face tracks,

inspired by [Everingham et al., 2006]:

1. Run the off-the-shelf OpenCV face detector over all frames, searching over in-plane

95

Figure 6.1: Results of our predictions for LOST and CSI. The misclassified examples are:
row 1, column 3 (truth: Boone) and row 2, column 2 (truth: Jack).

rotations and scales.

2. Run face part detectors1 over the face candidates, and perform a 2D rigid transform

of the parts in each face to a fixed template. The face image is registered accordingly.

3. Compute the score of a candidate face s(x) as the sum of part detector scores plus

rigid fit error, normalizing each to weight them equally, and filtering out faces with

low score.

4. Assign faces to tracks by associating face detections within a shot using normalized

cross correlation on RGB, and using dynamic programming to group them together

into tracks. We subsample the tracks to avoid repetitive examples.

Concretely, for a particular TV episode, step (1) finds approximately 100,000 faces,

step (3) keeps approximately 10,000 of those, and after subsampling tracks in step (4) we

are left with 1000 face detections.

6.2 Ambiguous Label Selection

Screenplays for popular tv series and movies are readily available on the web. Given an

alignment of the screenplay to frames, we have ambiguous labels for characters in each

1Boosted cascade classifiers of Haar features for the eyes, nose and mouth

96

part
detection

frontal
face
detection

rigid
registration

decompilation

Figure 6.2: Face pipeline

scene: the set of speakers mentioned at some point in the scene, as illustrated in Figure 4.2.

We align the screenplay to the video using the methods presented in chapter3.

We use the scripts to select faces filtered by our pipeline and their associated ambigu-

ous label set based on two criteria:

• We prune out scenes that contain other characters than the ones we focus on (top 8,

16, or 32 characters across the episodes we consider).

• We prune out scenes that contain 4 or more characters in the scene (those are rare

cases anyway)

Each face track x in a scene is then represented by an ambiguous bag of size |Y | ∈
{1, 2, 3}, corresponding to the set of characters mentioned at any point during the scene:

set of speakers, and set of characters mentioned in the narrative elements of the screenplay.

All names are aligned to a common first name / last name reference using automatically

extracted cast list from IMDB, see section 7.8.1). The average bag size we obtain is 2.13

for LOST, and 2.17 for CSI.

Errors in ambiguous label selection. In the TV episodes we considered, we observed

that approximately 1% of ambiguous label sets were wrong, in that they didn’t contain the

ground truth label of the face track. This came from several reasons: presence of a non-

english speaking character (Jin Kwon in Lost, who speaks Korean) whose dialogue is not

transcribed in the closed captions; sudden occurence of an unknown, uncredited character

97

on screen, and finally alignment problems due to large discrepencies between screenplay

and closed captions. While this is not a major problem, it becomes so when we consider

additional cues (mouth motion, gender) that restrict the ambiguous label set. We will see

how we tackle this issue with a robust confidence measure for obtaining good precision

recall curves.

6.3 Results with the basic system

Now that we have a set of instances (face tracks), feature descriptors for the face track and

ambiguous label set for each face track, we can apply the same method as described in the

previous chapter. We use a transductive setting: we test our method on our ambiguously

labeled training set.

The confusion matrix displaying the distribution of ambiguous labels for the top 16

characters in LOST is shown in figure 6.3 (top). The confusion matrix of our predictions

after applying our ambiguous learning algorithm is shown in figure 6.3 (bottom). Our

method had the most trouble disambiguating Ethan Rom from Claire Littleton (Ethan Rom

only appears in 0.7% of the ambiguous bags, 3 times less then the second least common

character) and Liam Pace from Charlie Pace (they are brothers and co-occur frequently, as

can be seen in the top figure). The case of Sun Kwon and Jin Kwon is a bit special, as Jin

does not speak english in the serie and is almost never mentioned in the closed-captions,

which creates alignment errors between screenplay and closed captions. These difficulties

illustrate some of the interesting challenges in ambiguously labeled datasets. As we can

see, the most difficult classes are the ones with which another class is strongly correlated

in the ambiguous label confusion matrix. This is consistent with the theoretical bounds we

obtained in section 4.3.4, which establish a relation between the class specific error rate

and class specific degree of ambiguity ε.

Quantitative results are shown in Table 6.1. We measure error according to average 0-1

loss with respect to hand-labeled groundtruth labeled in 8 entire episodes of LOST. Our

98

Figure 6.3: Top: Label distribution of top 16 characters in Lost. Element Dij represents
the proportion of times true class i was seen with class j in the ambiguous bags, and∑

j Dij = 1. Bottom: Confusion matrix of predictions (without the additional cues).
Element Aij represents the proportion of times true class i was classified as class j, and∑

j Aij = 1. Class priors for the most frequent, median, and the least frequent characters
in LOST are Jack Shephard, 14%; Hugo Reyes, 6%; Ethan Rom, 0.7%.

99

model does significantly better than all baseline methods, and we will further improve re-

sults in section 6.4. We now compare several methods to obtain the best possible precision

at a given recall, and propose a confidence measure to this end.

6.3.1 Improved confidence measure for precision-recall evaluation

We contribute a confidence measure that significantly improves precision-recall in a re-

fusal to predict scheme. A refusal to predict scheme, as used by [Everingham et al., 2006]

for a related character naming application, is a way to obtain a precision recall curve for a

multiclass classification problem: for a given recall rate r, and total number of examples

m, we extract the r ·m most confident predictions (according to some confidence measure

we need to define) and compute precision p on those examples. The curve is obtained by

varying r ∈ [0, 1].

Figure 6.4 shows several natural choices for defining a confidence score

confidence(x) for an example x:

1. the max score is the simplest:

confidence(x) = max
a
ga(x)

2. the ratio score is an improvement, used by [Everingham et al., 2006]. It is defined

as:

confidence(x) = max
a

exp(ga(x))∑
b exp(gb(x))

3. the relative score can be defined as the difference between the best and second best

scores over all classifiers (ga)a∈{1..L}:

confidence(x) = gy
∗
(x)− max

a∈{1..L}−{y∗}
ga(x),

where y∗ = arg maxa∈{1..L} g
a(x).

100

4. we can define the relative-constrained score as an adaptation to the ambiguous

setting; we only consider votes among ambiguous labels Y :

confidence(x) = gy
∗
(x)− max

a∈Y−{y∗}
ga(x),

where y∗ = arg maxa∈Y g
a(x).

There are some limitations with all of those measures, in the case where we have some

errors in ambiguous labels (z /∈ Y for the true label z). This can occur for example if

we restrict them with some heuristics to prune down the amount of ambiguity, such as the

ones we consider in section 6.4 (mouth motion cue, gender, etc). At low recall, we want

maximum precision, therefore we cannot trust too much the heuristic used in relative-

constrained confidence. At high recall, the errors in the classifier dominate the errors in

ambiguous labels, and relative-constrained confidence gives better precision because of

the restriction it introduces.

We introduce a hybrid confidence measure that gets the best of both worlds, perform-

ing well in the two regimes. We provide experimental support for this in figure 6.4. It is

defined as an intermediate solution between relative confidence and relative-constrained

confidences: let har(x) (where r is the given recall) be defined as:

har(x) =

g
a(x) if a ∈ Y

(1− r)ga(x) + rminb g
b(x) else

(6.1)

Our confidence confidencer(x) is then simply defined by applying confidence confidence

on the new classifier har(x). By design, in the limit r → 0, confidencer(x) behaves like

relative confidence. In the limit r → 1, har(x) is small for a /∈ Y and so confidencer(x)

behaves like relative confidence.

6.3.2 Precision-recall

We compute precision-recall curves, plotted in figure 6.4, using the different confidence

measures introduced. We will now further improve those results by considering additional

cues for naming.

101

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

max

ratio

relative

relative_constrain

hybrid

Figure 6.4: Our hybrid confidence score versus other confidence scores. x axis: recall; y
axis: error rate for our ambiguous learning method on 16 episodes of Lost (top 16 charac-
ters). The simplest is the max confidence score, and performs rather poorly as it ignores
other labels. relative-constrain improves the high precision/low recall region by consider-
ing the margin instead. The relative-constrain improves the high-recall/low-precision re-
gion by only voting among the ambiguous bags, but it suffers in high-precision/low recall
region because some ambiguous bags may be erroneous (not containing the groundtruth).
Our hybrid confidence score gets the best of both worlds, and is asymptotically the same
as the other 2 methods in their best regimes, dominating all the other schemes almost ev-
erywhere.

102

LOST (#labels, #episodes) (8,16) (16,16) (32,16)
Naive 14% 16.5% 18.5%

ours (“mean”) 10% 14% 17%
ours + mouth motion + gender 6% 11% 13%

Table 6.1: Misclassification rates of different methods for naming in TV show LOST:
naive model, our model, and our model improved with additional constraints of mouth
motion and gender, on the top {8,16,32} characters across 16 episodes. For comparison,
other baseline methods’ performances for (#labels, #episodes) = (16, 16) are knn: 30%;
Model 1: 44%; chance: 53%.

6.4 Additional cues

We investigate with additional features to further improve the performance of our system:

mouth motion, grouping constraints, gender. Final misclassification results are reported in

table 6.1.

6.4.1 Mouth motion

The first cue is the mouth motion cue, introduced in [Everingham et al., 2006]. It uses

lip motion during dialog to detect presence or absence of a speaking character on screen.

After aligning screenplay and closed captions, we know who is supposed to speak in a

certain time interval [t1, t2]. Absence of lip motion in this interval for a given face track

is an evidence that this person is not the speaker. If on the other hand that face has

significant lip motion, it is likely to be the speaker. We use a very similar approach to

[Everingham et al., 2006] to detect lip motion: for each face in a face track x that inter-

sects with [t1, t2], we compute s(x), the maximum normalized cross correlation between

a patch centered around the detected mouth (after registration) and neighboring patches in

the next frame, allowing for translations of ±20 pixels in each direction. The aggregate

score for the face track covering an interval [t′1, t
′
2] is:

s̄ = E[t1,t2]∩[t′1,t
′
2][s(x)] (6.2)

103

We use three thresholds tmin, smin, smax defined as follows: we refuse to predict lip motion

for face tracks with |[t1, t2] ∩ [t′1, t
′
2]| < tmin or s̄ ∈ [smin, smax]. Otherwise, we detect

lip motion if s̄ > smax and absence of lip motion if s̄ < smax. Those thresholds are

set to achieve 90% precision for detecting lip-motion and absence of lip motion on a

validation set that we groundtruthed (containing 100 tracks with extracted and registerd

lip regions and the corresponding motion label for the whole track). In our experience

the cue is more accurate for detecting absence of lip motion (a person talking cannot be

completely still). Lip motion can be the artifact of a sudden head rotation or lighting

change, as observed in [Everingham et al., 2006], and is harder to classify correctly. We

suspect more advanced classifiers and feature representations would improve performance

of the lip motion detector, which plays a significant role in [Everingham et al., 2006].

Contribution. Our main contribution to this cue is to reduce the temporal scope of each

utterance (initially a very coarse estimate based on closed captions time stamps) using the

forced alignment described in section 5.3.3. This gives a tighter alignment of potential lip

motion and dialog, thereby reducing false positive / false negative motions in non-speech

intervals. Quantitative results for precision of the alignment are reported in figure 5.2.

Usage. We use the cue as follows in our ambiguous label setting: suppose we have a face

track x with ambiguous label set Y and a temporally overlapping utterance from a speaker

corresponding to a ∈ {1..L}. We modify Y as follows:

Y :=

{a} if lip motion

Y if refuse to predict or |Y | = {a}

Y − {a} if absence of lip motion

(6.3)

Note, this could result in multiple faces in one frame being classified as a in the case

where our lip motion detected fired for two overlapping face tracks. Our temporal group-

ing model in chapter 7 addresses this issue and many related ones.

104

6.4.2 Gender constraints

We discuss gender classification in section , which gives a score γ(x) for each face track x.

We assume known the gender of names mentioned in the screenplay (using automatically

extracted cast list from IMDB, see section). We use gender by filtering out the labels that

do not match by gender the predicted gender of a face track, if the confidence is greater

than a threshold (one threshold for females, one for males, are set on a validation data

to achieve 90% precision for each direction of the gender prediction). Thus, we modify

ambiguous label set Y as follows:

Y :=

Y if gender uncertain

Y − {a : a is male} if gender predicts female

Y − {a : a is female} if gender predicts male

(6.4)

6.4.3 Grouping constraints

We also experiment with grouping constraints, which provide only indirect information

on labels. Assuming with have a clustering of face tracks, grouping constraints state that

face tracks grouped together should be labeled in the same way. We propose a very simple

must-not-link constraint, which states yi 6= yj if face tracks xi, xj are in two consecutive

shots (expressing alternation of shot/reaction shots that are common in dialogs for

example). The constraint is only set for the cases where there are two characters locally:

the ambiguous label sets are Yi = Yj = {a, b}. This is therefore equivalent to a grouping

constraint with inverted labels (the multiclass case is more tricky, as discussed in our

related work chapter).

We also propose groundtruth grouping cues for comparison, and compare the use of

both real and groundtruth grouping cues in the experiments. The groundtruth constraints

are: yi = yj for each pair of face tracks xi, xj of the same label, and that are separated

by at most one shot. Thus, the number of constraints remains linear with the number of

105

tracks. Details on how to incorporate such constraints as convex terms in our ambiguous

loss function are provided in section 8.4.

We describe more elaborate constraints in detail in section 8.3.1 for a related naming

application.

6.5 Ablative analysis

Figure 6.5 shows the ablative, showing precision-recall curves for several methods: our

method (mean), the naive baseline, and our method augmented with the additional cues

we discussed:

• mean: our method

• naive: the naive model from the previous chapter

• link: simple must-not-link constraints from shot alternation,

• gender: gender cue for simplification of ambiguous bags;

• mouth: mouth motion cue for detecting the speaker with synchronous mouth mo-

tion

• mouth+gender: a combination

• groundtruth grouping: link constraints with perfect grouping

• groundtruth mouth: mouth motion cue with perfect lip motion detection

We see that the constraints provided by mouth motion help most, followed by gender

and link constraints. The best setting (without using groundtruth) combines the former two

cues. Also, we notice once again a significant performance improvement of our method

over the naive method.

106

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

naive

mean

mean_link

mean_gender

mean_mouth

mean_mouth_gender

mean_link_groundtruth

mean_mouth_groundtruth

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

naive

mean

mean_link

mean_gender

mean_mouth

mean_mouth_gender

mean_link_groundtruth

mean_mouth_groundtruth

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

naive

mean

mean_link

mean_gender

mean_mouth

mean_mouth_gender

mean_link_groundtruth

mean_mouth_groundtruth

Figure 6.5: Ablative analysis. x-axis: recall; y-axis: error rate for character naming across
16 episodes of Lost, and the 8,16,32 most common labels (respectively for the top, middle,
bottom plots). We compare our method, mean, to the naive model and show the effect
of adding several cues to our system. link: simple must-not-link constraints from shot
alternation, gender: gender cue to prune ambiguous bags; mouth: mouth motion cue
to detect the speaker with synchronous mouth motion; we also consider the combination
mouth+gender, as well as how well we perform with perfect sub components such as
groundtruth grouping constraint and groundtruth mouth motion cue.

107

6.6 Qualitative results and Video demonstration

We show examples with predicted labels and corresponding accuracy, for various charac-

ters in figures 6.6, 6.7, 6.8, 6.9 for LOST and figures 6.10, 6.11, 6.12, 6.13 for CSI. Those

results were obtained with the basic system of section 6.3. Full-frame detections can be

seen in figure 6.1.

6.6.1 Video demonstration

We propagate the predicted labels of our model to all faces in the same face track through-

out an episode. Video results of several episodes can be found at the following website

http://www.youtube.com/user/AmbiguousNaming. In the videos we show the re-

solved label below each face detection. As a reference, images of the most common

characters corresponding to those episodes are in Figure 6.14.

6.7 Conclusion

We have presented an effective approach for learning from ambiguously labeled data,

where each instance is tagged with more than one potential labels. We show bounds on

the classification error, even when all examples are ambiguously labeled. We compared

our approach to strong competing algorithms on two naming tasks and demonstrated that

our algorithm achieves superior performance. We attribute the success of our approach to

better modeling of the mutual exclusion between labels, compared to the naive multi-label

approach. Moreover, unlike recently published techniques that address similar ambigu-

ously labeled problems, our method does not rely on heuristics and does not suffer from

local optima of non-convex methods.

108

http://www.youtube.com/user/AmbiguousNaming

Figure 6.6: Examples classified as Claire in the LOST data set using our method. Results
are sorted by classifier score, in column major format; this explains why most of the errors
occur in the last columns. The precision is 97.4%.

109

Figure 6.7: Examples classified as Locke in LOST. The precision is 78.7%.

110

Figure 6.8: Examples classified as Boone in LOST. The precision is 90.1%.

111

Figure 6.9: Examples classified as Kate in LOST. The precision is 97.5%.

112

Figure 6.10: Examples classified as Catherine Willows in CSI. The precision is 85.3%.

113

Figure 6.11: Examples classified as Sara Sidle in CSI. The precision is 78.3%.

114

Figure 6.12: Examples classified as Greg Sanders in CSI. The precision is 92.7%.

115

Figure 6.13: Examples classified as Nick Stokes in CSI. The precision is 66.4%.

116

Figure 6.14: Groundtruth examples for 16 common characters in LOST.

117

Chapter 7

Temporal Grouping

7.1 Introduction

Up till now we have considered various weakly supervised tasks: alignment of shots,

threads ands scenes to a screenplay, action retrieval, character naming. All of those in-

volve access to a screenplay and closed captions. In this chapter and the next one, we

relax this assumption to various degrees. This chapter in particular addresses the totally

unsupervised case where the video is the only input. Our focus in this chapter shifts from

naming characters to grouping characters, which, in the ideal case, amounts to attaching

a unique identifier to each encountered person. If this task could be done reliably, a small

amount of supervision or even a single name reference per person could in theory be suffi-

cient to name all the characters. This is in fact the strategy we employ in the next chapter,

where we show that character naming can still be done relatively accurately based on dia-

log only, exploiting the sparse, indirect, and noisy cues provided by first, second and third

person name references. The related work of [Ramanan et al., 2007] exploits similar ideas

with a hierarchical clustering and a small amount of manual supervision.

The ability to perform unsupervised character grouping in a video sequence can give

rise to other applications beyond naming, such as face retrieval[Sivic et al., 2005], action

118

1

A A B C C A BB

A B C

Monday, March 16, 2009

Figure 7.1: We model a movie or TV show as a sequence of face tracks ordered temporally.
We propose a temporal grouping model that groups faces based on not only appearance but
also on local film structure cues. The resulting clusters of faces are subsequently assigned
a name based on dialog references in the next chapter.

recognition, cast list generation[Fitzgibbon and Zisserman, 2002], and video summariza-

tion. The lack of supervision makes the task significantly harder than in previous chapters,

however, as we lack the oft-occurring textual cues that “glue” together otherwise very dif-

ferent facial appearances of a given character. To overcome these challenges, we exploit

the rich structured information present in video which arises from editing. Movies and

TV series are typically edited according to a set of conventions, aimed at creating the per-

ception of “continuity” across a shot cut (see [Smith, 2005] for an excellent introduction

to the topic). A number of those rules can be used as constraints for grouping, see table

7.2. For example, the 180◦ rule implies that a character will consistently appear on the

left (or right) side of the screen throughout a scene whenever two characters are visible.

Likewise, two consecutive shots typically show a different character before and after the

cut, especially when there are only two people in the scene. In this chapter, we propose

a novel temporal grouping model that groups faces across an episode based on not only

appearance but also on local film structure cues. In this model, states represent partitions

119

of the k most recent face tracks, and transitions represent compatibility of consecutive par-

titions. We present dynamic programming inference and discriminative learning for the

model. In the next chapter we will see how the resulting clusters of faces are subsequently

assigned a name by learning a classifier from partial label constraints derived from dialog.

We evaluate our temporal grouping model on several hours of TV and movies, achieving

significantly higher accuracy than several strong baselines.

7.2 Related Work

Grouping. Related to several of the approaches above is general learning of global dis-

tance metrics or similarity functions to cluster globally. There is a large body of work

on metric learning and learning to cluster in different applications; a few applicable

techniques include [Nowak and Jurie, 2007, Ferencz et al., 2006]. In general, these ap-

proaches are limited in that they only model pairwise interactions, rather than arbitrary

interactions in a larger local neighborhood. Furthermore, global distance functions are

forced to generalize to a wide variety of situations. We believe our approach of learning

how to cluster locally is more effective.

A related recent work [Cowans and Szummer, 2005] proposes a graphical model for

simultaneous partitioning and labeling of graphs with low tree-width, and modeled effec-

tively labeled partitions. Their setting was significantly different, however, being restricted

to pairwise interactions and focusing on a binary labeling task.

Face representation. A number of visual cues can be used for grouping faces together.

In [Ramanan et al., 2007], the authors distinguish cues at different time scales. At the

shortest time scale, within a shot, they cluster faces based on tracking. At the medium time

scale, within a scene, they use hair and clothing to group faces across shot boundaries. At

longer time scales (across episodes), they use facial appearance as the other cues are no

longer reliable.

120

7.3 Approach

We model a movie as a linear sequence of face tracks, ordered temporally into a chain

(see Figure 8.2). As an example, a typical 45-minute TV show contains approximately

500 face tracks in the sequence. Track i is associated with a character name label zi out

of a set of possible characters in the episode (known a priori). In a typical TV show, the

number of labels L ≈ 20.

A straightforward approach to this problem would be to learn a sequence model over

the set of labels {1..L}. Then, assuming a local scope/clique size k (i.e., a kth-order

Conditional Random Field or CRF), the number of states considered at any time during

inference would be Lk, and the number of transitions Lk+1—prohibitively expensive even

for moderate values of k. In practice, we would like to capture long-range interactions

in a scene involving up to 10 face tracks, thus be able to express shot alternation, scene

structure etc.

An underlying problem with this representation is its redundancy. In our temporal

grouping task, we only wish to learn patterns of the label sequence, not anything specific

about particular labels, which are arbitrary and whose values change in each example. For

example, assuming a local scope of size 3, there is no difference between the sequence of

labels z1, z1, z2 and the sequence z4, z4, z3, although in a CRF over labels, both sequences

are considered during inference.

Our approach addresses these problems by representing the state of a size-k scope as

one of the set of possible partitions of k elements. The number of partitions of size k

grows much slower than the number of possible label sequences of size k (see Table 7.1,

and next section), giving us a much more compact representation. As a concrete example,

even limiting the label set to L = 4 labels (compared to 20 for the characters in a typical

TV show), the state space over all partitions is at least 10 times smaller than the state space

over all labelings for sequences of size k ≤ 10. This allows us to significantly increase

the size of the neighborhood relations captured by our model.

This motivates our 2 phase approach. In the first phase, we learn a large-scope partition

121

classifier, and use it to locally cluster a sequence of faces and utterances. In the second

phase, we use first, second and third person references to propagate labels to our small set

of clusters.

Local Partitioning. We propose to learn a model which explicitly enumerates the set of

possible partitions for a local window of face tracks and predicts a partition based on local

constraints, similarities and interactions across modalities. In particular we are able to

capture scene-level interactions such alternations, presence in same image, etc.

7.4 How to represent a partition

Let Pn denote the set of partitions of the set {1, ..., n}, ∀n ≥ 1. The size of Pn is given

by the nth Bell number, defined recursively as Bn =
∑n−1

i=0

(
n−1
i

)
Bi, with B1 = 1. We

denote |y| as the cardinality (number of sets or clusters) of a partition y.

There are many ways to represent partitions. For n = 3, using set notation we have

exactly 5 possible partitions: {(1, 2, 3), (1, 2)(3), (1)(2, 3), (1, 3)(2), (1)(2)(3)}. Note

that order within the parenthesis and outside the parenthesis does not matter, so that, for

example, (2, 3)(1) ' (3, 2)(1) ' (1)(3, 2). A more convenient notation is to associate

to a partition y ∈ Pn a partition matrix Y ∈ {0, 1}n×n representing the equivalence

class relationship defined by y: Yij = 1 if i, j are in the same cluster (i.e. equivalent), as

illustrated in Figure 7.2. We will use y and Y interchangeably.

We define the restriction yI of a partition y ∈ Pn (with partition matrix Y) to a subset

I ⊂ {1, ..., n} as the partition y ∈ P|I| whose partition matrix is Y (I, I), obtained by

extracting rows and columns of Y indexed by I .

Inversely, for m ∈ Z we define an extension operation τm[y] on a partition y ∈ Pn
as the unique partition y′ ∈ Pn+|m| such that |y′| = |y| + |m|, and y′[m+1,m+n] = y (for

m > 0), or y′[1,n] = y (for m ≤ 0).

122

Figure 7.2: Matrix representation of all 5 partitions of size n = 3. Each pair of ele-
ments (representing face tracks) can either be same (S) or different (D), yielding different
clusterings. Cluster labels are represented by colors along the diagonal.

n 3 4 5 6 7 8 9 10
Bn 5 15 52 203 877 4140 21147 105

4n 64 256 1024 4096 16384 65536 3 · 105 106

Table 7.1: Bn: number of partitions of n elements, representing our state space. This is
much more compact than a standard sequence labeling state space over a neighborhood of
n elements, even with a very small label set (L = 4).

7.5 Partition CRF

Conditional Random Fields (CRF), have been introduced in [Lafferty et al., 2001] to

model labeling of sequence data. We introduce here a new model for partitioning of

sequence data. Our partition CRF can handle general high-order clique potentials defined

on local partitions, and in particular allows for complex, interleaved partitions. Thus, it is

well adapted to model the alternation of shots and reaction shots that are typical in movie

sequences. We define a partition CRF of order k a graphical model over partitions y

of a sequence of observations x = (x1, ..., xn) ∈ X n with arbitrary potential function

g : Pk ×X n × {1..n} → <:

P (y|x) ∝
n−k+1∏
i=1

exp(g(y[i,i+k−1], x, i)) (7.1)

Note, without any additional constraint on y, the above expression is degenerate for n > k

as it gives equal probability to certain partitions regardless of the potential function: for

example, take k = 2, n = 3 and the partitions {(1, 3)(2)} and {(1)(2)(3)}. To remedy

this we introduce the concept of memory-limited partition, which is the partition analog

123

of memory-limited TSP, introduced in section 3.4.1. We say that y ∈ Pn is k-limited,

denoted as y ∈ Pkn if:

∀i,∀j ≥ i+ k, Yij = 1 =⇒ ∃i′ ∈ {i+ 1.., j − 1} : Yi′j = 1 (7.2)

In other words, two consecutive elements i, j in a cluster are within a distance at most

k − 1. In our example, this rules out {(1, 3)(2)}. A partition CRF is thus defined for

y ∈ Pkn to avoid this degeneracy.

7.6 Inference

We describe here how to perform exact MAP (Maximum Aposteriori) inference in a par-

tition CRF, which is the following problem:

y∗ = arg max
y∈Pkn

P (y|x) = arg max
y∈Pkn

n−k+1∑
i=1

g(y[i,i+k−1], x, i) (7.3)

The main difficulty is that partition y is defined globally, introducing dependencies be-

tween consecutive windows. We break this chain of dependencies by a decomposition of

y into a collection of sequence-consistent partitions, defined next.

7.6.1 Sequence-consistent decomposition

Informally, a sequence-consistent partition is a collection of partitions on overlapping win-

dows that agree on the overlap. Given a partition y ∈ Pkn , we define its sequence-consistent

decomposition as:

dec(y) = (y[i,i+k−1])i={1..n−k+1} ∈ (Pk)n−k+1 (7.4)

In order to solve the MAP, we are interested in the inverse operation, which is not al-

ways well defined. In particular, two consecutive partitions in the decomposition must

consistent with each other: we say that y′, y′′ ∈ Pk are consistent, denoted as y′ ∼ y′′, if:

y′[2,k] = y′′[1,k−1] (7.5)

124

Figure 7.3 illustrates the concept of consistency between consecutive partitions. Note, this

relation is transitive but not symmetric. Reciprocally, a sequence y1 ∼ y2 ∼ . . . ∼ yn−k+1

with consistent consecutive partitions in Pk defines a unique partition y ∈ Pkn such that

dec(y) = (yi)i={1..n−k+1}:

y = y1 � y2 � ...� yn−k+1 (7.6)

where y′ � y′′ denotes the concatenation of two partitions y′ ∈ Pk′ , y′′ ∈ Pk′′ (with

k′ ≥ k′′), with corresponding matrix defined as:

1(τ−1[Y ′]τ k
′−k′′+1[Y ′′] + τ k

′−k′′+1[Y ′′]τ−1[Y ′]) (7.7)

which is of order k′ + 1. Note, this expression simply expresses the symmetric transitive

closure of the equivalence relationship of the partition.

1 2 3 4

1

2

3

4

?

? ?

? ? ?

2 3 4 5

2

3

4

5

?

? ?

? ? ?

Figure 7.3: Left: Consistency between partitions of successive windows of size k = 4
(Right) are enforced. Same/different relationships for elements 2,3,4 must be the same as
elements 1,2,3 in the next window.

7.6.2 Dynamic Programming Solution

With this decomposition, the MAP reduces to:

y∗ = y1∗ � y2∗ � ...� yn−k+1∗ (7.8)

(yi∗)i=1..n−k+1 = arg max
y1∼y2...∼yn−k+1

∑
i

g(yi, x, i). (7.9)

125

which can be solved with a standard Viterbi-like dynamic program: the following score

sj(yj) = max
y1∼y2...∼yj

∑
i

g(yi, x, i). (7.10)

can be computed with the recursion:

s1(y1) = g(y1, x, 1) (7.11)

si(yi) = max
yi−1∼yi

si−1(yi−1) + g(yi, x, i), ∀i > 1 (7.12)

The running time for computing the dynamic programming table is O(n · Bk+1), as it

is easily shown that the number of consistent consecutive partitions is ≤ Bk+1. Decoding

time is O(n), using a standard book-keeping and starting from the end of the table.

7.6.3 Cardinality-Constrained MAP

The MAP assignment finds a single partition. In practice it is useful to have control over

the number of clusters in the partition, which allows to compare two different partitioning

algorithms (or sets of parameters) for a fixed number of clusters. We extend our framework

to compute the optimal C-way partition, for any C ∈ {1..n}:

y∗C = arg max
y∈Pkn

P (y|x, |y| = C) (7.13)

The cardinality-constrained MAP can be solved with another dynamic program, by aug-

menting the state-space from y ∈ Pk to (y, c) ∈ Pk × {1..n}: c represents the number of

clusters seen so far. We define (y′, c′) and (y′′, c′′) to be consistent if the following holds:

(y′, c′) ∼ (y′′, c′′) if

y
′ ∼ y′′

c′′ = c′ + 1(|y′′| = |y′′[1,k−1]|+ 1)

The second condition states that c′′ = c′ when y′′ groups its last element k with at least one

of elements {1..k−1}, and c′′ = c′+1 if the last element falls in its own cluster, thereby in-

crementing the total count of clusters seen so far. We compute the optimal C-way partition

with dynamic programming, using the augmented states (y, c) and compatible transitions.

126

A single dynamic programming table can be computed in O(nkBk+1) to retrieve optimal

C-way partitions for all values of C. Each one requires an O(n) decoding pass, starting

from the best scoring state (y∗, C∗) in the last table column that satisfies C∗ = C.

7.7 Learning

The temporal grouping model we consider has a lot of parameters, and tuning them by

hand would be overly complicated. We propose to learn our model as a structured multi-

class classification, predicting for each window x = {x1, . . . , xk} its associated partition

y ∈ Pk. The number of classes |Pk| = Bk is large (see table 7.1) but structured, which

makes learning easier via parameter sharing. We treat each window independently in a

sequence at training time, which is justified since the large window we use already cap-

tures a lot of context information. Note, other structured learning schemes are possible,

for example treating the entire sequence as input. We also investigated with a perceptron

rule, which performed worse.

We assume that the potential function is linearly parametrized via a d-dimensional

feature mapping f : Pk ×X k → <d, taking the following form:

g(y, x, i) = gy(xi, ..., xi+k−1) = gy(xi) = w · f(xi, y)

where w ∈ <d is the set of parameters which we will estimate from a set of n labeled

partitions {(xi, yi)}. The window groundtruth partition yi ∈ Pk is obtained from the

sequence groundtruth partition y ∈ Pkn via the decomposition introduced in section 7.6.1.

7.7.1 Discrete loss

We follow a standard approach in structured prediction, which aims at minimizing over all

hypothesis g the loss incurred by the best prediction g∗(x) = arg maxy g
y(x). This leads

to minimizing the following discrete loss:

L01(g) =
∑
i

Li01(g) with Li01(g) = `(yi, g∗(xi)), (7.14)

127

where the individual loss `(yi, y) : Y × Y 7→ R+ penalizes partitions based on how much

they differ from the gold standard, as discussed in section 7.7.4.

7.7.2 A convex large-margin formulation

We propose to estimate g by minimizing a convex upperbound on the discrete loss function

(7.14). Let ψ(z) be a standard convex binary loss such as exponential, logistic or hinge,

which is decreasing and upperbounds the step function 1(z ≤ 0). We define a convex loss

function as L(g) = R(g) +
∑

i Li(g), where

Li(g) =
∑
y∈Y

`(yi, y)ψ
(
gy

i

(xi)− gy(xi)
)
. (7.15)

and R(g) is a regularization term. We show in proposition 7.7.1 that L(g) is indeed a

(convex) upperbound on L01(g).

Note that other choices of convex upperbounds are possible; the one we chose has the

advantage of not assigning any special meaning to gy(x) = 0 since only the difference

gy
i
(xi)− gy(xi) matters. In contrast, the following loss

Linaive(g) =
∑

y∈Y−{yi}
`(yi, y)ψ

(−gy(xi))+ ψ
(
gy

i

(xi)
)

performed worse. We believe the main reason is that the latter formulation tries to simul-

taneously drive gyi up and gy down even when y is very close to yi, which makes the

problem harder to fit.

Proposition 7.7.1 Li01(g) ≤ Li(g).

Proof Given that `(yi, y) ≥ 0 and ψ(z) ≥ 1(z ≤ 0),

Li01(g) = `(yi, arg max
y

gy(xi))

≤
∑
y∈Y

`(yi, y)1(gy
i

(xi) ≤ gy(xi))

≤
∑
y∈Y

`(yi, y)ψ(gy
i

(xi)− gy(xi))).

128

7.7.3 Optimization

Using the same technique as in section 4.6, we can convert the loss (7.15) into a standard

supervised binary classification and solve the resulting optimization using a Quadratic Pro-

gram, Support Vector Machine, or boosting for example. The last option performed best

in our experiments, as it allows us to perform feature selection during learning. We use

the exponential loss ψ(z) = exp(−z) and iteratively optimize the objective with boosting

using decision stumps as weak classifiers. We show in appendix C.1 that we can select

the optimal stump across all feature dimensions at each round of boosting in linear time

O(d · n · Bk), and present the corresponding algorithm. Note, this requires some care

since the stumps are defined on the scores gy(x), not on the differences gyi(xi)− gy(xi).

7.7.4 Hamming loss for partitioning

Our individual loss `(yi, y) : Y ×Y 7→ R+ should penalize partitions based on how much

they differ from the true partition yi. For example, if the true partition is {(1, 2)(3, 4)},
then a predicted partition {(1, 2)(3)(4)} might be penalized less than {(1)(2, 3)(4)} since

it is closer to the truth. There are several natural metrics for measuring the quality of a

predicted partition with respect to the true partition. For example, precision and recall with

respect to same/different relationships is often used. Other choices include Normalized

Mutual Information, and Clustering Accuracy which involves finding the optimal mapping

between true and predicted clusters. We choose the following expression, which allows to

penalize differently splits and merges compared against groundtruth:

`(yi, y) =αmerge
∑
u<v

1(Y i
uv = 0 and Yuv = 1)

+(1− αmerge)
∑
u<v

1(Y i
uv = 1 and Yuv = 0)

where the binary matrices Y, Y i refer to partitions y, yi and 1(·) is the indicator function.

We observed that smaller values of αmerge performed best on a validation set, and set

αmerge = 0.1 in all our experiments.

129

7.8 Grouping Cues

Our representation can encode any type of local cues or constraints defined over a neigh-

borhood of size ≤ k, and can depend on both the input and proposed partition. Our base

features are defined by computing several types of pairwise distances d(xi, xj) for each

pair of face tracks xi, xj in a window of size k, and computing multiple statistics over

those. We condition on y, the proposed partition, distinguishing whether the pair of face

tracks lies in the same cluster (Yij = 1):

fsame(x, y) = s({d(xi, xj)}i,j:Yij=1) (7.16)

fdifferent(x, y) = s({d(xi, xj)}i,j:Yij=0) (7.17)

where s(·) aggregates statistics over its inputs: we compute the mean, the sum, the max,

and the min. The latter two statistics are non-additive and thus cannot be reduced to a sum

of pairwise interactions. We also considered (but didn’t use) features that only depend on

the partition y, representing local partition patterns. We could define many other features

on y or (x, y) but decided to keep our feature set relatively simple to compare to previous

work. We describe below the set of pairwise distances d(xi, xj) used. Each feature is

tuned automatically using max-margin estimation described earlier.

7.8.1 Appearance cues

Appearance cues are illustrated in figure 7.4.

Best registered face. In a preprocessing stage, each face is registered using 4 control

points (eyes, nose and mouth), using a method similar to [Everingham et al., 2006].

For each face track we take the best face as determined by registration score of the

4 control points, and represent it in the following color spaces: RGB, LAB, and the

separate channels R,G,B,L,A,B. We use L1 norm as a distance for each color spaces fc:

dregistered(xi, xj) = ||fc(xi)− fc(xj)||1.

130

4 x 50 PCA

hair face torso background

RGB color histograms

gender classifier

Figure 7.4: Appearance cues for grouping.

Color histograms. Following [Ramanan et al., 2007], we also use color histograms

for face, hair, torso. Figure 7.5 displays a set of frames from the TV show Buffy the

Vampire Slayer with face detections and torso/hair rectangles we use to compute the color

histograms. We define dhair(·, ·), dtorso(·, ·) and dface(·, ·) using χ2-distance.

Exemplars. Again following [Ramanan et al., 2007], we also represent each track with 5

exemplars using Principal Components Analysis (PCA)—estimate PCA components from

all our data and project our examples onto the first 50 components. A difference between

our approach and [Ramanan et al., 2007] is that we first register faces. The distance

between 2 tracks is the minimum distance between all pairs of exemplars across the tracks:

dexemplar(xi, xj) = minkl ||eki − elj||2, where eki is exemplar k for track i (likewise for elj).

Gender. We collected 200, 000 images via Google Image search for common male and

female names. These were registered as before and used to train a gender classifier,

described in appendix A.1. Accuracy on a hold-out set was 83%. Each face track has

a vector of gender classification scores γ(x), which we aggregate in the following ways

before defining distances: mean, max, median over the track, as well as their signs

131

(predicted gender).

7.8.2 Video editing cues

A key contribution of our model is the ability to encode interesting local editing cues,

some of which are summarized in table 7.2. We define the following additional distances

based on such cues (and invite the reader to consider Figure 7.5, which illustrates many of

the cues, while reading):

Relative positioning of faces. We compute distances and signed distances based on the

x, and y coordinates of the mean face position in each track. We also compute difference

in log-space scale of each face.

Relative difference in pose. For each face part, after registering to a fixed scale, we

compute relative distances in x,y and (x, y) coordinates, providing information about

the orientation of the parts of the face relative to the face detection. The track is again

represented by the best-registered face.

Shot distance. Shot alternation is a strong cue for grouping. We provide 2 features based

on shot distance. One is absolute difference in shot id, determined beforehand using a

conservative shot-segmenter. The second is L1 distance in color histograms in LAB space

for a whole frame, accumulated over every frame in each face track. We found that 8 bins

per channel (amounting to 83 total bins) performed best.

Track overlap. Another simple but effective cue is whether two tracks ever overlap in

time (i.e. there is a frame for which faces from both tracks appear at the same time).

These tracks should clearly not be merged.

132

Intra-Scene Cues Description
actors per scene Average scene has few characters
180◦ rule Relative position of actors remains constant
shot alternation Consecutive shots show different characters
2 faces per frame Two faces in one frame are different people

Table 7.2: Grouping cues with a scene, see text for details.

Figure 7.5: Example frames from the TV show Buffy. Face/hair/torso rectangles are shown
for appearance cues. Red arrows mark do-not-group cues between face tracks appearing
in the same frame. Blue arrows and “L < R” labels indicate connections between face
tracks resulting from the 180◦ degree rule which dictates that faces remain in the same left
to right ordering in a scene and more weakly, they often remain in the same horizontal
portion of the screen.

133

7.9 Results for Temporal Grouping

7.9.1 Training and testing dataset

We trained our temporal grouping model using The Office (US) Season 2 Episode 5, a

1.5 hour episode. This provided us 1273 windows of 7 consecutive face tracks for train-

ing data. Based on cross-validation, we chose to use a partition size k = 7 because it

performed the best out of the computationally feasible possibilities (see Figure 7.8). We

evaluate our grouping on eight episodes of the TV show Lost (Season 1, Episodes 5-12),

one episode of Buffy the Vampire Slayer (Season 4 Episode 1) and the movie Misery. We

compare to 2 baselines, which are described next.

7.9.2 Baselines

Baseline 1 is a global agglomerative method proposed by Ramanan et

al. [Ramanan et al., 2007]. Briefly, this uses the same features as we employ, each

associated with its own distance function (dhair, dtorso, dface and dexemplar described in

Section 7.8). Logistic regression is used to learn the best weighting of these 4 distance

functions, and we feed this weighted distance function into an agglomerative clustering

algorithm.

Baseline 2 is a simple agglomerative method: each track i is modeled with one repre-

sentative face exemplar in LAB colorspace `i, and we use an L2-norm distance function

between 2 tracks i and j: d(i, j) = ||`i − `j||2.

7.9.3 Comparison

In all results, we measure performance as a trade off between the number of clusters (x-

axis) versus the purity of the clustering (y-axis). Purity for a clustering is defined as

prediction accuracy of names assigned by using the most frequent true name in a cluster

134

f(x, y)

g(x, y)

y∗

g(x, y) = w · f(x, y)

g∗(x) = arg max
y

g(x, y)

!(y∗, g∗(x))

L(g) =
∑

y

!(y∗, y) ψ(g(x, y∗)− g(x, y)) ≥ !(y∗, g∗(x))

!(y∗, g∗(x)) ≤ L(g)

L(g) = ψ(yg(x))

g(x) := g(x) + a1(fj(x) ≤ θ) + b

y ∈ {+1,−1}

y ∈ Pk

ψ(·)

y ∈ Pk

ȳ∗ = arg max
ȳ∈Pn

n−k+1∑
i=1

g(x̄[i,i+k−1], ȳ[i,i+k−1])

arg max
y1∼...∼yn−k+1

n−k+1∑
i=1

g(xi, yi)

arg max
y1,...,yn−k+1∈Pk

n−k+1∑
i=1

g(xi, yi)

yi ∈ Pk

y1 ∼ y2 ∼ ... ∼ yn−k+1

sj(yj) = max
y1∼...∼yj

j∑
i=1

g(xi, yi)

|ȳ| = C

O(n · Bk+1)

O(n2 · Bk+1)

purity =
4 + 2
4 + 3

mode=jack mode=charlie

Figure 7.6: Illustration of purity of a clustering (see text for details).

for all face tracks in the cluster:

purity(y) =
1

n

|y|∑
i=1

∑
j∈yi

1(zyi[j] = mode(zyi)),

where z denotes the true labels, yi[j] is the j th face track in the ith cluster of partition

y ∈ Pn, and n is the number of face tracks (see figure 7.6).

In figure 7.7 we show our performance against the 2 baselines. There is an inherent

trade off between global methods (such as the baselines) and our method. While we can

model rich local interactions of a label sequence, it is difficult to merge things that are tem-

porally distant, even if they are perceptually very similar. Global clustering, on the other

hand, is unconstrained by temporal distance but cannot perform as well when local clus-

tering is challenging. In general, we outperform the baseline methods significantly when

the number of clusters is greater than the optimal number of perfect clusters achievable

by temporal grouping with limited scope k. Our method performs best in a high precision

regime in which the number of clusters is relatively high, and the precision is close to

perfect. This type of behavior will aid in the naming task to come.

7.9.4 Ablative analysis

We also analyze the efficacy of features via ablative analysis (see Figure 7.8, left). Starting

with our full feature set, we sequentially remove sets of features and note the decrease in

performance. The features in [Ramanan et al., 2007] clearly help, but are further signifi-

cantly improved by the addition of gender and editing cues. Note that ablative analysis is

135

0 200 400 600
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc2 1

C*
TG*

AUC ours: 84.31
AUC Rama.: 83.27
AUC Lab: 78.64

0 200 400 600
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc2 3

C*
TG*

AUC ours: 75.92
AUC Rama.: 71.43
AUC Lab: 68.40

0 200 400 600
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc2 4

C*
TG*

AUC ours: 78.25
AUC Rama.: 73.99
AUC Lab: 71.55

0 200 400
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc3 1

C*
TG*

AUC ours: 71.58
AUC Rama.: 69.20
AUC Lab: 68.41

0 100 200 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc3 2

C*
TG*

AUC ours: 82.85
AUC Rama.: 83.45
AUC Lab: 83.49

0 100 200 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc3 3

C*
TG*

AUC ours: 75.77
AUC Rama.: 73.48
AUC Lab: 73.53

0 200 400 600
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
buffy season4 disc1 1

C*
TG*

AUC ours: 85.36
AUC Rama.: 84.57
AUC Lab: 80.26

0 200 400
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
misery 1

C*
TG*

AUC ours: 92.70
AUC Rama.: 92.61
AUC Lab: 92.18

temporal grouping (ours)
Ramanan et al.
Lab pixels + agglomerative

0 200 400 600
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc2 1

C*
TG*

AUC ours: 84.31
AUC Rama.: 83.27
AUC Lab: 78.64

0 200 400 600
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc2 3

C*
TG*

AUC ours: 75.92
AUC Rama.: 71.43
AUC Lab: 68.40

0 200 400 600
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc2 4

C*
TG*

AUC ours: 78.25
AUC Rama.: 73.99
AUC Lab: 71.55

0 200 400
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc3 1

C*
TG*

AUC ours: 71.58
AUC Rama.: 69.20
AUC Lab: 68.41

0 100 200 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc3 2

C*
TG*

AUC ours: 82.85
AUC Rama.: 83.45
AUC Lab: 83.49

0 100 200 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
lost season1 disc3 3

C*
TG*

AUC ours: 75.77
AUC Rama.: 73.48
AUC Lab: 73.53

0 200 400 600
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
buffy season4 disc1 1

C*
TG*

AUC ours: 85.36
AUC Rama.: 84.57
AUC Lab: 80.26

0 200 400
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
misery 1

C*
TG*

AUC ours: 92.70
AUC Rama.: 92.61
AUC Lab: 92.18

temporal grouping (ours)
Ramanan et al.
Lab pixels + agglomerative

Figure 7.7: Grouping results comparing our temporal grouping against a state of the art
method and an agglomerative baseline. C? refers to the number of correct labels. TG?

denotes the optimal number of clusters temporal grouping can achieve via inference with a
scope of size k = 7. AUC denotes the area under each curve from TG? to the total number
of face tracks, normalized so that the area for each episode sums to 1. In all results, we
measure performance as a trade off between the number of clusters (x-axis) versus the
purity of the clustering (y-axis).

136

0 100 200 300 400 500

0.4

0.5

0.6

0.7

0.8

0.9

1

ablative analysis

0 100 200 300 400 500

0.4

0.5

0.6

0.7

0.8

0.9

1

varying partition width

k=3
k=5
k=7pixels

prev+exemplars
prev+face,torso,hair hists
prev+gender
prev+face (x,y,scale)
prev+face part xy
prev+shot distance
prev+track overlap

Figure 7.8: Left: Ablative analysis of the features present in our sequence model, on Lost
Season 1 Episode 5 (“lost season1 disc2 1” in Figure 7.7). The biggest gains are obtained
from adding gender and face location and scale. Right: Performance as we vary the local
partition width k. We chose to use k = 7 in our experiments based on these results.

sensitive to the ablation ordering.

7.9.5 Effect of partition scope

In Figure 7.8, right, we measure performance as we vary the scope size k.

7.9.6 Qualitative results

Figure 7.9 shows qualitative results of our clustering on a test episode; we also show the

original face tracks before clustering in figure 7.10.

137

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Figure 7.9: Grouping results on Lost Season 1 episode 5. The number of clusters was
fixed to be 30% of the total number of face tracks. Blue represents bad splits, red represents
bad merges (compared to groundtruth). For clarity, we have reordered faces according to
their cluster id (shown as a white rectangle), and display the central face in each face track.

138

Figure 7.10: Original ordering of the faces clustered in figure 7.9. We show in blue the
less common case when two consecutive face tracks show the same character

139

Chapter 8

Identity Resolution Without Screenplay

8.1 Introduction

We address the problem of learning to name characters in movies and television with

minimal supervision. The ability to accurately determine who is on the screen for the

vast amounts of unannotated videos opens up the possibility of a number of applica-

tions such as large-scale indexing, retrieval and summarization. In several recent papers

[Everingham et al., 2006, Cour et al., 2009a], a screenplay and closed captions are used

to name characters by essentially using the knowledge of who is speaking and when to

associate names to faces using temporal overlap and other cues such as mouth motion.

When you watch a movie, consider how you infer characters’ names. Without ever

being given direct supervision (e.g., a cast list with head shots) or weaker annotation (e.g.,

a screenplay), you infer identities based on rare occurrences of first, second and third per-

son references (e.g., “I’m Jack”,“Hey, Jack”, and “Jack left.”, respectively), and implicitly

apply these identities to other occurrences throughout the movie based on visual appear-

ance and speech (e.g., “the woman with brown hair” or “the man with a raspy voice”). In

addition, you rely on movie structure to aid in resolution: character occurrences on screen

often alternate during dialogs, and when a new scene begins, a new set of characters is

usually present.

140

Figure 8.1: Diagram of prior and current work on character naming. When screenplay is
not available, we know what is being said but not who said it. The only source of name
information is from dialog cues: first, second and third person references. (See text for
details.)

Figure 8.2: We present a weakly supervised classifier that incorporates multiple-instance-
type constraints from dialog cues as well as local grouping constraints, introduced in the
previous chapter.

In this work, we do not assume that the screenplay or any other annotation is avail-

able, but instead integrate natural dialog and movie structure cues to automatically name

the people present in a video. The only input we assume is what is available to the typ-

ical movie-goer: the video and subtitle text/closed captions1. Eliminating dependence

on screenplays allows broad application of our method to video collections with minimal

human intervention. This is in contrast to prior work that requires either manual anno-

tation or names extracted from a screenplay in order to provide training examples (see

1The need for subtitles could be avoided with reliable speech recognition. Fortunately, much of modern
video content contains some form of closed-captions or subtitles, including YouTube videos.

141

figure 8.1).

There are several difficult challenges caused by lack of screenplays. Essentially, we

know what is being said, but not who said it. First, second, and third person references

in the speech are extremely sparse and often ambiguous. Changes in visual appearance

over time make global grouping difficult. In our proposed approach, we first group faces

based on local appearance cues and film structure, as presented in chapter 7. The resulting

clusters of faces are subsequently assigned a name by learning a classifier from partial

label constraints. The weakly supervised classifier incorporates multiple-instance-type

constraints from dialog cues as well as local grouping constraints and gender constraints

in a unified convex formulation. We evaluate on several hours of TV and present the first

quantitative results on naming without screenplay.

8.2 Related Work

Identity resolution. Most prior work on character naming in video assumes additional

supervised or weakly supervised data. A screenplay is used in [Everingham et al., 2006]

to align faces to dialogs using mouth motion cues, from which we can deduce the iden-

tity of the speaker by aligning screenplay and closed captions. In [Ramanan et al., 2007],

the authors use grouping cues at different time scales to form increasingly large clus-

ters of faces. However, they use groundtruth annotations to assign names to clusters. In

“Names and Faces” [Berg et al., 2004] the authors automatically cluster images aided by

text coming from associated captions. In “Name-it” [Satoh et al., 1999], the authors use

video and closed caption information to name people in televised news broadcasts via a

simple co-occurrence score with extracted labels. Also related to our approach is the work

of [Berg et al., 2005], in which a generative model of names in photograph captions and

faces in images is proposed, with a language model that uses caption context to predict

face-name assignments. Face-name correspondences, language model and face clustering

are updated using Expectation Maximization.

142

8.3 Label constraints for person recognition

We explain here which cues can be exploited for naming characters with weak super-

vision. Our task is to predict the label y ∈ {1..L} corresponding to the name of a

character in a face track x, out of L possible names. In order to simplify our evalua-

tion, we assume the label set known using automatically extracted cast list from IMDB

website. For example, the cast list of TV series Lost can be found at the following url:

http://www.imdb.com/title/tt0411008/fullcredits#cast. Note, we

only use the list of names and their associated gender, but not the images from this web-

site. We build our formulation on a simple and general one-against-all multiclass scheme

of the form:

y = arg max
a
ga(x), (8.1)

where ga(x) = wa · f(x) is a linear function parametrized by weight vector wa ∈ <d

for each class label a ∈ {1..L}, f(x) ∈ <d is a feature vector for input face track x,

described in 8.6. If we had access to labeled examples (x, y), with y ∈ {1..L}, one

common approach would be to encourage ga(x) > 0 for a = y and ga(x) < 0 for a 6= y

by minimizing the following convex upperbound on the corresponding 01-loss (where

ψ(·) denotes some convex binary loss):

Lsupervised(g) =
∑
i

ψ(gyi(xi)) +
∑
i

∑
a6=yi

ψ(−ga(xi)) (8.2)

In our partial supervision setting however, we have no labeled examples and therefore

cannot rely on such supervised learning schemes. Instead we only have constraints on the

possible labels for each face track, summarized in table 8.1. The constraints are of 3 kinds:

grouping constraints, 1st and 2nd reference constraints, and label exclusion constraints from

3rd person references and gender predictions.

143

http://www.imdb.com/title/tt0411008/fullcredits#cast

8.3.1 Grouping constraints

Our grouping constraint states that face tracks grouped together should be labeled in the

same way. One possible solution inspired by manifold regularization in semi-supervised

learning would be to simply rely on appearance similarity to group faces together as a

constraint for naming. However, our person classifier learns a decision boundary based

on appearance cues, and so appearance based constraints are to some extent already cap-

tured. Instead, we use the temporal grouping framework described in chapter 7 to obtain

grouping constraints, which uses additional local cues such as film structure, continuity

editing and physical constraints to make grouping decisions. By introducing independent

grouping cues, we are able to bias the weakly supervised classifier in a more effective

way.

There are two possible ways to enforce grouping constraints of the form yi = yj

between face tracks xi, xj: 1) as a hard constraint, and 2) as a soft constraint. A hard con-

straint of this form can be expressed in a convex formulation by adding linear constraints

to the objective, of the form: ∀a, ga(xi)− ga(xj) = 0, but the problem might become over

constrained or even infeasible if there are too many such constraints. Alternatively, one can

treat a cluster of face tracks as a single instance, for example by kernelizing the objective

and using a set kernel [Wof and Shashua, 2003, Kondor and Jebara, 2003, Watkins, 1999].

Such approaches are feasible but make it hard to recover from errors in the clustering. As

in [Yan et al., 2004], we choose the latter approach involving a soft constraint instead,

the precise form of which is described in section 8.4. We introduce a soft constraint rep-

resenting yi = yj for all consecutive face tracks xi, xj that are in a same cluster, as found

by our previous temporal grouping. In the case where our temporal clustering mistakenly

merges two different characters together from two different scenes (say, with correspond-

ing true labels AAABBB), this will result in a single erroneous constraint (y3 = y4 in

our example). In contrast, constraining all pairs of instances in a cluster would be over

constraining and less robust to clustering errors (introducing 9 erroneous constraints out

of 15 constraints in our example). Thus, the number of so-called must-link constraints that

144

I’m Jack.

1st person reference

Hey, Jack!

2nd person reference

Where is Jack?

3nd person reference

Jack-in-the-box

false positive

Jack in scene
speaking

on/off screen

Jack in scene
not speaking
on/off screen

Jack not in scene
not speaking
on/off screen

“Hey, Jack!”

time

neighborhood S (20 seconds)

Multiple Instance constraint

y() = Jack

or

y() = Jack

Figure 8.3: First, second and third person references from dialogue (top) provide multiple
instance type supervision on the desired labeling y(·) (bottom).

we use is n− C, where n = #face tracks, C = # clusters which can be set using section

7.6.3. In our experiments we set C = 0.3 · n for each episode.

8.3.2 1st and 2nd reference constraints

When we observe the utterance “Hey Jack” (classified as 2nd reference, see section 8.6)

at time t, we assume that some face track xi in the temporal neighborhood of t will have

label y = Jack2. The neighborhood is defined as all clusters of face tracks which contain

a face within 10 seconds of time t (converted to frame number). This is a type of multiple

instance (MI) constraint of the form ∃i ∈ S : yi = a for a label a and a set of face tracks

S associated to a reference. This is illustrated in figure 8.3.

2One could refine this rule using mouth motion cue[Everingham et al., 2006], at the cost of introducing
additional errors

145

8.3.3 Exclusion constraints

This is a negative label constraint of the form: yi 6= a, and comes from either (a) 3rd

person reference or (b) gender. (a) When we observe an utterance classified as 3rd person

reference (e.g. “Jack left”) at time t, we assume that neighboring face tracks (at t ±
30seconds) cannot have the label a corresponding to Jack. (b) When the average score

of a face track xi according to our gender classifier exceeds a threshold θM (M for Male),

we add label constraint yi 6= a for each label a corresponding to a female (F) name, and a

similar rule applies in the opposite case with some θF < θM
3.

8.3.4 Propagation of constraints through clustering

Multiple instance constraints described in the previous section are propagated throughout

clusters. Thus, for any tuple of face tracks with a multiple instance constraint (for example,

the constraint “yi = a ∨ yj = a” for a pair i, j and label a), we also add other tuples of

face tracks from the corresponding clusters (in our example, yi′ = a ∨ yj′ = a with (i, i′)

in one cluster and (j, j′) in another cluster), subsampling at most 200 out of all possible

combinations. We also propagate in a similar way the exclusion constraints.

8.4 Convex formulation

We encode these label constraints (summarized in table 8.1) with a unified framework,

based on combining convex losses on linear combinations of the scores ga(xi). Our com-

bined loss function is:

3In practice, we set θF and θM to achieve 90% precision on a validation set

146

L(g) =
∑
i,a

Li,aexcl.(g) +
∑
i,j

Lijlink(g) +
∑
S,a

LS,aMI (g)

Li,aexcl.(g) = ψ(−ga(xi)) (8.3)

Lijlink(g) =
∑

a∈{1..L}
ψ̄(ga(xi)− ga(xj)) (8.4)

LS,aMI (g) = ψ(
1

|S|
∑
i∈S

ga(xi)), (8.5)

where each term expresses a constraint: (8.3) for yi 6= a, (8.4) for yi = yj , and (8.5) for

∃i ∈ S : yi = a. We use ψ̄(u) = ψ(u) + ψ(−u) for some convex binary loss function

ψ(·) : < 7→ <+. In our experiments, we use the square hinge loss ψ(u) = max(0, 1−u)2.

Note, (8.3) and (8.4) have been used in a related formulation [Yan et al., 2004], but

we believe (8.5) is a novel way to express a multiple instance constraint in a convex

formulation. Intuitively, this term encourages at least one of ga(xi) (i ∈ S) to be positive

while allowing for the others being negative. In contrast, the simpler term
∑

i∈S ψ(ga(xi))

would encourage all of ga(xi) (i ∈ S) to be positive.

Optimization. We convert minimization of our convex loss L(g) into a standard L2 loss

binary Support Vector Machine with L2 regularization on weight vectors w = (wa)a ∈
{1..L}. We solve it using the open-source library liblinear [Fan et al., 2008] (solving it

with boosting would have also been possible). In our naming experiments, running time

is about 30 seconds for 3,000 face tracks, 300 features, and 55 labels (names from the cast

list that are mentioned by at least one dialog reference).

8.5 Features

We use the following features f(x) for character naming: a face track x is described by

its best face (c.f. registration score), using 100 PCA components for the whole face, and

50 PCA components per part (two eyes, nose and mouth) using 15× 15 patches around a

147

constraint example # constraint
1st person ref “I’m Jack” 20 ∃i ∈ S : yi = a
2nd person ref “Hey, Jack” 60 ∃i ∈ S : yi = a
3rd person ref “Jack left” 30 yi 6= a
gender(M/F) M score> θM 400 yi 6= a,∀a ∈ F

grouping track clusters 400 yi = yj

Table 8.1: Constraints on possible labels for our weakly supervised character naming
based on dialog, gender and grouping cues. We show their occurrences (#) per episode
averaged over 16 episodes of Lost, and the resulting type of constraint. a represents a label
(e.g. Jack), yi the predicted label of a face track, S a set of face tracks in the temporal
neighborhood of the reference.

fixed location.

8.6 Character Naming Results

We run our grouping and naming system jointly on the 8 episodes of the TV show Lost

on which we ran our clustering tests in chapter 7. We fix the number of clusters output by

our grouping algorithm to 30% of the total number of face tracks in each episode, using

section 7.6.3. We extract references by matching words in the subtitle to the cast list, and

determine reference type (1st, 2nd, 3rd) with a discriminative classifier described in section

8.6.4. The final decision for each face track xi in some cluster S is determined using

max-voting over the cluster (arg maxa
∑

j∈S g
a(xj)).

8.6.1 Precision-recall evaluation

We measure performance of our system in a refusal to predict scheme inspired

by [Everingham et al., 2006]. At a given confidence threshold, we measure how accu-

rately the system names characters for examples whose confidence exceeds the threshold

(precision) versus how many examples pass the threshold (recall). Confidence for an ex-

ample is measured as the difference between the best and second best scores over all

148

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RECALL

P
R

E
C

IS
IO

N

ours

w/o gender cues

w/o gender cues or grouping

prior (Jack Shephard)

Figure 8.4: Naming results on 8 episodes of Lost. “prior” is the most common character.
“ours” uses gender, grouping, and 1st, 2nd,3rd reference constraints propagated through
grouping.

149

classifiers (ga)a∈{1..L}:

confidence(xi) = gy
∗
i (xi)− max

a∈{1..L}−{y∗i }
ga(xi),

where y∗ = arg maxa∈{1..L} g
a(x). The precision and recall at a given confidence thresh-

old θ are then defined as:

precision(θ) =

∑
i 1(confidence(xi) > θ) · 1(y∗i = zi)∑

i 1(confidence(xi) > θ)
(8.6)

recall(θ) =

∑
i 1(confidence(xi) > θ)∑

i 1
, (8.7)

where z denotes the true labels. By varying θ across all confidence levels, we obtain a

precision-recall curve. Across the 8 testing episodes of Lost, we achieve an accuracy of

43.5% for the 10 most frequent characters (each one voting among all of the L = 55

possible labels). The accuracy goes up to 76.7% for the 10% most confident scores. The

precision-recall curve is shown in Figure 8.4.

8.6.2 Ablative analysis

Figure 8.4 shows the ablative analysis, with the exact same evaluation. We see that the

cues provided by grouping, references, and gender improve significantly the performance

of the system.

8.6.3 Analysis with combinations of perfect cues

We compare in figure 8.5 the quality of our naming system by replacing various compo-

nents with their equivalent “perfect” counterparts—assuming perfect clustering (TG∗ in

figure 7.7), perfect gender classification, perfect reference classification or perfect associ-

ation of references to face tracks.

150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RECALL

P
R

E
C

IS
IO

N

w/ perfect clustering and reference association

w/ perfect clustering

w/ perfect reference gender

w/ perfect reference type classification

ours

prior (Jack Shephard)

Figure 8.5: Naming results on 8 episodes of Lost, swapping in perfect components.
“ours” is as before (see Figure 8.4). Each curve is obtained by replacing only the men-
tioned component of our system with it’s perfect counterpart: “perfect clustering” uses the
optimal clustering possible using sequence partitioning with scope k = 7. “perfect gen-
der” uses groundtruth gender information. “perfect reference type classification” uses the
groundtruth type of reference (1st, 2nd,3rd) instead of our text classifier. “perfect clustering
and reference association” directly applies each reference to its closest correct neighbor,
and adds exclusion constraints for negative local neighbors. We see that perfect clustering
and association of references adds the most improvement, and perfect gender and refer-
ence type classification add smaller but still significant improvements.

151

8.6.4 Dialog reference classification

Finally, we analyze an important component of the naming system, the ability to detect

which type of reference occurs in order to constrain examples correctly. We train a dis-

criminative classifier to determine whether a given reference (i.e. mention of a character

name) corresponds to a 1st, 2nd or 3rd person reference, or none of the above. We match

proper nouns in the subtitles to the cast list and extract features centered around the name

occurrence. For training the classifier we use 500 downloaded screenplays from TV shows

and movies (excluding the ones we test on) as follows: we automatically label groundtruth

by aligning subtitles with the screenplay, which indicates who is speaking, and who else

is present in the scene, from which we can infer the type of reference. For features, we

calculate the 1,000 most frequent unigrams/bigrams in the vicinity of 2 tokens from the

reference, including punctuation. We use 6,000 features, each corresponding to an occur-

rence of a unigram or bigram in a particular position w.r.t. the reference. Our reference

classifier achieves 79.3% accuracy on a set of 300 hand-labeled examples.

8.7 Conclusion

Our end-to-end system is first to address the problem of character identification in TV

video without the use of a screenplay, which opens the possibility of name-based retrieval

in general video collections with minimal human intervention. We proposed a novel tem-

poral grouping model to group face tracks locally with high precision and then learned to

identify characters using weak supervision provided by cues from references in the dia-

log, gender, and temporal grouping. We presented a novel way to integrate these cues as

multiple instance constraints in a convex formulation.

152

Chapter 9

Conclusion and Directions for Future

Work

In this thesis we addressed weakly supervised problems that arise in computer vision, in

particular movie structure parsing and character naming. We showed it is possible to learn

under progressively less and less supervised settings, and explored the following three

settings: (1) video, closed captions and screenplay, (2) video and closed captions, and (3)

video only, where we learn to assign unique ids rather than names. We elaborated some

theory on some of the intermediate cases, notably providing some answers to the follow-

ing question: under which conditions can we learn from ambiguously labeled examples?

We have identified cases where we can link the weak supervised objective to the fully su-

pervised objective. Another interesting question to raise, is: for what other types of weak

supervision can we get the same type of guarantees? Our last chapter has shown that we

can essentially treat the ambiguous learning scenario and the multiple instance learning

scenario with the same type of convex formulation, as illustrated in figure 9.1. As future

work we would like to present a more unified theory of weakly labeled data to answer

those questions.

153

ambiguous learning multiple instance learning

8.4 Convex formulation

We encode these label constraints (summarized in table 8.1) with a unified framework,

based on combining convex losses on linear combinations of the scores ga(xi). Our com-

bined loss function is:

L(g) =
∑
i,a

Li,a
excl.(g) +

∑
i,j

Lij
link(g) +

∑
S,a

LS,a
MI (g)

Li,a
excl.(g) = ψ(−ga(xi)) (8.3)

Lij
link(g) =

∑
a∈{1..L}

ψ̄(ga(xi)− ga(xj)) (8.4)

LS,a
MI (g) = ψ(

1

|S|
∑
i∈S

ga(xi)), (8.5)

where each term expresses a constraint: (8.3) for yi "= a, (8.4) for yi = yj , and (8.5) for

∃i ∈ S : yi = a. We use ψ̄(u) = ψ(u) + ψ(−u) for some convex binary loss function

ψ(·) : % &→ %+. In our experiments, we use the square hinge loss ψ(u) = max(0, 1−u)2.

Note, (8.3) and (8.4) have been used in a related formulation [Yan et al., 2004], but

we believe (8.5) is a novel way to express a multiple instance constraint in a convex

formulation. Intuitively, this term encourages at least one of ga(xi) (i ∈ S) to be positive

while allowing for the others being negative. In contrast, the simpler term
∑

i∈S ψ(ga(xi))

would encourage all of ga(xi) (i ∈ S) to be positive.

Optimization. We convert minimization of our convex loss L(g) into a standard L2 loss

binary Support Vector Machine with L2 regularization on weight vectors w = (wa)a ∈
{1..L}. We solve it using the open-source library liblinear [Fan et al., 2008] (solving it

with boosting would have also been possible). In our naming experiments, running time

is about 30 seconds for 3,000 face tracks, 300 features, and 55 labels (names from the cast

list that are mentioned by at least one dialog reference).

138

constraint

8.4 Convex formulation

We encode these label constraints (summarized in table 8.1) with a unified framework,

based on combining convex losses on linear combinations of the scores ga(xi). Our com-

bined loss function is:

L(g) =
∑
i,a

Li,a
excl.(g) +

∑
i,j

Lij
link(g) +

∑
S,a

LS,a
MI (g)

Li,a
excl.(g) = ψ(−ga(xi)) (8.3)

Lij
link(g) =

∑
a∈{1..L}

ψ̄(ga(xi)− ga(xj)) (8.4)

LS,a
MI (g) = ψ(

1

|S|
∑
i∈S

ga(xi)), (8.5)

where each term expresses a constraint: (8.3) for yi "= a, (8.4) for yi = yj , and (8.5) for

∃i ∈ S : yi = a. We use ψ̄(u) = ψ(u) + ψ(−u) for some convex binary loss function

ψ(·) : % &→ %+. In our experiments, we use the square hinge loss ψ(u) = max(0, 1−u)2.

Note, (8.3) and (8.4) have been used in a related formulation [Yan et al., 2004], but

we believe (8.5) is a novel way to express a multiple instance constraint in a convex

formulation. Intuitively, this term encourages at least one of ga(xi) (i ∈ S) to be positive

while allowing for the others being negative. In contrast, the simpler term
∑

i∈S ψ(ga(xi))

would encourage all of ga(xi) (i ∈ S) to be positive.

Optimization. We convert minimization of our convex loss L(g) into a standard L2 loss

binary Support Vector Machine with L2 regularization on weight vectors w = (wa)a ∈
{1..L}. We solve it using the open-source library liblinear [Fan et al., 2008] (solving it

with boosting would have also been possible). In our naming experiments, running time

is about 30 seconds for 3,000 face tracks, 300 features, and 55 labels (names from the cast

list that are mentioned by at least one dialog reference).

138

convex
relaxation

f(x, y)

g(x, y)

y∗

g(x, y) = w · f(x, y)

g∗(x) = arg max
y

g(x, y)

!(y∗, g∗(x))

L(g) =
∑

y

!(y∗, y) ψ(g(x, y∗)− g(x, y)) ≥ !(y∗, g∗(x))

!(y∗, g∗(x)) ≤ L(g)

L(g) = ψ(yg(x))

g(x) := g(x) + a1(fj(x) ≤ θ) + b

y ∈ {+1,−1}

y ∈ Pk

ψ(·)

y ∈ Pk

ȳ∗ = arg max
ȳ∈Pn

n−k+1∑
i=1

g(x̄[i,i+k−1], ȳ[i,i+k−1])

arg max
y1∼...∼yn−k+1

n−k+1∑
i=1

g(xi, yi)

arg max
y1,...,yn−k+1∈Pk

n−k+1∑
i=1

g(xi, yi)

yi ∈ Pk

y1 ∼ y2 ∼ ... ∼ yn−k+1

sj(yj) = max
y1∼...∼yj

j∑
i=1

g(xi, yi)

|ȳ| = C

O(n · Bk+1)

O(n2 · Bk+1)

purity =
4 + 2
4 + 3

yi &= Kate

yi &= a

yi = yj

ψ(
1
|Y |

∑
a∈Y

ga(xi))

∃!a ∈ Y : yi = a
a: label
Y: ambiguous labels
S: neighborhood
yi: assigned label
xi: face track
ga(xi): score for label a
!: binary loss

Y

labels

in
s
ta

n
c
e

s

S

labels

in
s
ta

n
c
e

s

f(x, y)

g(x, y)

y∗

g(x, y) = w · f(x, y)

g∗(x) = arg max
y

g(x, y)

!(y∗, g∗(x))

L(g) =
∑

y

!(y∗, y) ψ(g(x, y∗)− g(x, y)) ≥ !(y∗, g∗(x))

!(y∗, g∗(x)) ≤ L(g)

L(g) = ψ(yg(x))

g(x) := g(x) + a1(fj(x) ≤ θ) + b

y ∈ {+1,−1}

y ∈ Pk

ψ(·)

y ∈ Pk

ȳ∗ = arg max
ȳ∈Pn

n−k+1∑
i=1

g(x̄[i,i+k−1], ȳ[i,i+k−1])

arg max
y1∼...∼yn−k+1

n−k+1∑
i=1

g(xi, yi)

arg max
y1,...,yn−k+1∈Pk

n−k+1∑
i=1

g(xi, yi)

yi ∈ Pk

y1 ∼ y2 ∼ ... ∼ yn−k+1

sj(yj) = max
y1∼...∼yj

j∑
i=1

g(xi, yi)

|ȳ| = C

O(n · Bk+1)

O(n2 · Bk+1)

purity =
4 + 2
4 + 3

yi &= Kate

yi &= a

yi = yj

ψ(
1
|Y |

∑
a∈Y

ga(xi))

∃!a ∈ Y : yi = a

Figure 9.1: Ambiguous learning scenario from chapters 4-6 and multiple instance learn-
ing scenario from chapter 8. There is a strong parallel between the two types of weak
supervision on the desired labeling y(·).

9.1 Directions for future work

9.1.1 Closed captions and plot summary

We considered the cases of closed captions + screenplay, closed captions without screen-

play. Another case of interest is to have closed captions together with some weak form

of screenplay: given a one or two paragraph summary of a movie plot such as the ones

we can find on Wikipedia or imdb, the goal is to find a precise alignment between plot

elements and the video, including character naming and recognition of actions.

9.1.2 Character naming without closed captions

As future work, we would also like to consider the extreme case where only the video

and audio are available. While much of the techniques presented in chapters 7 and 8

could in theory apply by replacing the closed captions with automatic speech recognition,

in practice there are a number of additional audio cues that could be used for character

association such as audio signature. This would allow one to process the larger mass of

154

less structured video content such as Youtube videos.

9.1.3 Action recognition

We plan on significantly extending the action retrieval results to leverage the large amount

of data we have collected. Relevancy can be improved by two sources of improvements: 1)

using the ambiguous naming algorithm to resolve names more precisely (and filter actions

by the corresponding actor performing the action), and 2) by learning models of action

based with a technique similar to the ambiguous learning case: for example, a typical

narration line such as “Jack turns away and runs” can give rise to two ambiguous action

labels, “turn away” and “run”. The main difficulty is to segment the video into potential

action snippets (the analog of faces).

155

Appendix A

Image Features

A.1 Gender classifier

We collected an initial set of 1.5 million images via Google Image search, searching for

1, 000 male and 1, 000 female names and downloading the top 800 images for each query.

We used the gender of each name as noisy groundtruth labels for our gender classifier. For

each image we ran a face detector based on Viola-Jones[Viola and Jones, 2004], removing

images containing more than one face. Each image was registered using 4 facial features

(using a part detector for two eyes, nose, mouth), and resized to a 60×90 grayscale image

containing the face. We subsampled 200,000 images for training a two-level classifier: the

first level is composed of a 8× 8 grid of gentleboost classifiers based on decision stumps

on Haar features restricted to regularly spaced overlapping grid locations. The second

level uses the first level 64 classifiers as weak learners, and trains a linear model based on

decision stumps. Accuracy on a hold-out set was 83%.

156

Appendix B

Text Features

B.1 Automatic Screenplay Parsing

Our goal is to automatically parse an input screenplay into a computer-readable format

consisting of narrations, scene transitions and dialogues (with identified speaker). The

difficulty comes from the wide diversity of formatting rules when considering screenplay

downloaded from the web. There are also inconsistencies within a screenplay, which is

unavoidable since those are written by people. To further complicate matters, there is

quite often a variable-length portion of text before (prologue), and after (epilogue) the

actual screenplay we care about. Writing a specific parser for each type of screenplay is

infeasible; instead we propose a two stage approach. In the first stage, we learn a bag

of words model for the different constituents of screenplay: narrations, scene transitions,

dialogues, and prologue/epilogue. The features we use are actual words, which we expect

to generalize well across different screenplays (”I” is more frequent in a dialogue, whereas

”camera” occurs more frequently in narrations, and ”INT.” would be often found in scene

transitions). Of course, we cannot expect such a generic classifer to perfectly classify

each sentence, however the bulk of it is correct. In a second stage, we train another

bag-of-words classifier which only uses formatting features (indentation, capitalization,

etclet@tokeneonedot) which do not generalize across screenplays. The training labels

157

come from the previous stage, which we expect to correct in this second stage. This

approach works remarkably well, due to the fact that within a screenplay, a few formatting

rules can be used to parse the entire text, and that we only need to be roughly correct in

the first stage.

B.2 Alignment of Screenplay and Closed Captions

The screenplay and the closed captions are readily available for a majority of movies and

TV series produced in the US. A similar approach was used in [Everingham et al., 2006]

to align faces with character names, with 2 differences: 1) they used the screenplay to re-

veal the speaker identity as opposed to scene transitions, and 2) subtitles were used instead

of closed captions. Subtitles are encoded as bitmaps, thus require additional steps of OCR

and spell-checking to convert them to text[Everingham et al., 2006], whereas closed cap-

tions are encoded as ASCII text in DVDs, making our approach simpler and more reliable,

requiring a simple modification of mplayer (http://www.mplayerhq.hu/).

B.3 Pronoun Resolution

Algorithm we used for pronoun resolution (adapted from Hobbs algorithm for our needs):

1. identify names of speaking characters

2. provide gender label for speaking characters (done by hand but could be automated)

3. process entities: for first sentence,

(a) provide value for SPEAKER variable (name of a person, ’director’ or null for

stage guidelines)

(b) create an ordered list of ENTITIES (nouns and pronouns, read off from pre-

processed input, order of appearance from left to right).

158

http://www.mplayerhq.hu/

(c) create an ordered list of ANAPHORS (identify pronouns in ENTITIES by

string match -he, she, etc- start with last element in ENTITIES and process

backwards to first)

4. find antecedents for anaphors

(a) for first element in ANAPHORS, check elements in ENTITIES until you find

a gender-compatible antecedent (none found when there is no match)

(b) output updated list of ENTITIES

(c) proceed to next sentence and repeat a-c above except ’if none found’, check

ENTITIES of previous sentence.

159

Appendix C

Miscellanous proofs

C.1 Linear time feature selection during boosting

We describe below how efficiently to adapt a multiclass variant of

gentleboost[Friedman et al., 2000, Torralba et al., 2006] to the case considered in

section 7.7.3. At each round of boosting, we update the linear classifier with a weak

learner h(x, y), chosen so as to minimize a second order Taylor approximation of L(g).

For the the exponential loss this is equivalent to minimizing (over h):∑
i

∑
y∈Y

zi(y)(h(xi, yi)− h(xi, y)− 1)2, (C.1)

where we introduced the weights zi(y) ∝ `(yi, y)ψ
(
gy

i
(xi)− gy(xi)

)
, normalized to

sum to 1 over (i, y). Notice, a salient contrast with the objective in [Torralba et al., 2006]

(equation 3) is the coupling introduced by the difference term h(xi, yi)− h(xi, y), poten-

tially complicating the optimization. We show below that in fact, we can still efficiently

compute the optimal weak learner, parameterized as a decision stump, and furthermore

this can be done in linear time with a single pass over the training examples. We use deci-

sion stumps as weak learners, of the form h(x, y) = a·1(fj(x, y) ≤ θ)+b·1(fj(x, y) > θ)

and seek the optimal stump across feature dimension j, threshold θ, and parameters

a, b. Notice we can set b = 0 WLOG since adding a constant term to h(x, y) doesn’t

160

change the objective. We further simplify the notation, rewriting (C.1) as an expectation

w.r.tlet@tokeneonedotthe weights z:

E
[
a(F̄ θ − F θ)− 1

]2
, (C.2)

with u = (i, y), zu = zi(y), F̄ θ
u = 1(h(xi, yi) ≤ θ), F θ

u = 1(h(xi, y) ≤ θ). The optimal a

is given by a = 1/E[F̄ θ − F θ] and the corresponding objective is:

1− E2[F̄ θ − F θ]

E[F̄ θ − F θ]2
(C.3)

The ratio can be computed without evaluating the expectations across all values of θ using

the fact that F̄ θ, F θ are binary:

E[F̄ θ − F θ]2 = E[F̄ θ]2 + E[F̄ θ]2 − 2E[F̄ θF θ] (C.4)

= E[F̄ θ] + E[F̄ θ]− 2E[¯̄F θ], (C.5)

where ¯̄F θ
u = 1(max(h(xi, yi), h(xi, y)) ≤ θ). The optimal θ (discretized into a set of

regularly spaced discrete values θ1...θT) can now be computed via a single pass over the

data of size N = n · k for a given feature dimension j using the following algorithm:

Algorithm 3 Contrastive Gentleboost

1: for u = 1 to N do
2: compute the bins θ, θ̄, ¯̄θ in which fall h(xi, y), h(xi, yi),max(h(xi, yi), h(xi, y))
3: update the corresponding counts: Σ[F]θ+ = zu likewise for Σ[F̄],Σ[¯̄F]
4: end for
5: replace Σ[F],Σ[F̄],Σ[¯̄F] by their cumulative sums
6: for θ = θ1 to θT do
7: compute the objective value val(θ) using (C.3) and (C.5), using Σ[·] in place of

expectations.
8: end for

The final running time to select the optimal stump across all feature dimensions is

d ·N = d · n ·Bk.

161

Bibliography

[Allwein et al., 2000] Allwein, E. L., Schapire, R. E., Singer, Y., and Kaelbling, P. (2000).

Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of

Machine Learning Research, 1:113–141. 21

[Andrews et al., 2003] Andrews, S., Tsochantaridis, I., and Hofmann, T. (2003). Sup-

port vector machines for multiple-instance learning. Advances in neural information

processing systems, pages 577–584. 26

[Arora et al., 1993] Arora, S., Babai, L., Stern, J., and Sweedyk, Z. (1993). The hardness

of approximate optimia in lattices, codes, and systems of linear equations. In IEEE

Symposium on Foundations of Computer Science, pages 724–733. 15

[Asuncion and Newman, 2007] Asuncion, A. and Newman, D. (2007). UCI machine

learning repository. 74, 80

[Balas and Simonetti, 2001] Balas, E. and Simonetti, N. (2001). Linear time dynamic

programming algorithms for new classes of restricted tsps: A computational study.

INFORMS Journal on Computing, 13:56–75. 39, 40

[Barlow, 1989] Barlow, H. (1989). Unsupervised learning. Neural Computation,

1(3):295–311. 28

[Barnard et al., 2003] Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D., and

Jordan, M. (2003). Matching words and pictures. Journal of Machine Learning Re-

search, 3:1107–1135. 54

162

[Bartlett et al., 2006] Bartlett, P. L., Jordan, M. I., and Mcauliffe, J. D. (2006). Convex-

ity, classification, and risk bounds. Journal of the American Statistical Association,

101(473):138–156. 16

[Bartlett and Mendelson, 2002] Bartlett, P. L. and Mendelson, S. (2002). Rademacher

and Gaussian complexities: Risk bounds and structural results. Journal of Machine

Learning Research, 3:463–482. 64

[Belkin et al., 2006] Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold regu-

larization: A geometric framework for learning from labeled and unlabeled examples.

The Journal of Machine Learning Research, 7:2399–2434. 24

[Berg et al., 2005] Berg, T., Berg, A., Edwards, J., and Forsyth, D. (2005). Whos in the

Picture? In Advances in Neural Information Processing Systems, page 137. MIT Press.

142

[Berg et al., 2004] Berg, T., Berg, A., J.Edwards, M.Maire, R.White, Teh, Y., Learned-

Miller, E., and Forsyth, D. (2004). Names and faces in the news. In CVPR, pages

848–854. 55, 142

[Bie and Cristianini, 2004] Bie, T. D. and Cristianini, N. (2004). Convex methods for

transduction. In Advances in Neural Information Processing Systems 16, pages 73–80.

MIT Press. 24

[Bishop, 1995] Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford

University Press. 15

[Blum and Chawla, 2001] Blum, A. and Chawla, S. (2001). Learning from labeled and

unlabeled data using graph mincuts. In In International Conference on Machine Learn-

ing (ICML. 24

163

[Blum and Mitchell, 1998] Blum, A. and Mitchell, T. (1998). Combining labeled and

unlabeled data with co-training. In Proceedings of the eleventh annual conference on

Computational learning theory, pages 92–100. ACM New York, NY, USA. 23

[Boutell et al., 2004] Boutell, M., Luo, J., Shen, X., and Brown, C. (2004). Learning

multi-label scene classification. Pattern Recognition, 37(9):1757–1771. 27

[Boykov et al., 2001] Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate en-

ergy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 23(11):1222–1239. 24

[Breiman, 1996] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–

140. 20

[Brown et al., 1993] Brown, P. E., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L.

(1993). The mathematics of statistical machine translation: parameter estimation. Com-

putational Linguistics, 19:263–311. 75

[Caruana, 1997] Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41–

75. 14

[Chapelle et al., 2006] Chapelle, O., Schölkopf, B., and Zien, A. (2006). Semi-supervised

learning. MIT press. 14

[Chapelle et al., 2007] Chapelle, O., Tubingen, G., Sindhwani, V., and Keerthi, S. (2007).

Branch and bound for semi-supervised support vector machines. In Advances in Neural

Information Processing Systems: Proceedings of the 2006 Conference, page 217. MIT

Press. 24

[Cour et al., 2005a] Cour, T., Benezit, F., and Shi, J. (2005a). Spectral segmentation with

multiscale graph decomposition. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2005. CVPR 2005, volume 2. 11, 28

164

[Cour et al., 2005b] Cour, T., Gogin, N., and Shi, J. (2005b). Learning spectral graph

segmentation. In Workshop on Artificial Intelligence and Statistics (AISTATS). 11, 29

[Cour et al., 2008] Cour, T., Jordan, C., Miltsakaki, E., and Taskar, B. (2008).

Movie/script: Alignment and parsing of video and text transcription. In Proceedings of

10th European Conference on Computer Vision, Marseille, France. 11

[Cour et al., 2009a] Cour, T., Sapp, B., Jordan, C., and Taskar, B. (2009a). Learning

from ambiguously labeled images. In Proceedings of the 2009 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. 11, 140

[Cour et al., 2009b] Cour, T., Sapp, B., Nagle, A., and Taskar, B. (2009b). Talking pic-

tures: Temporal grouping and dialog-supervised person recognition in video. In Sub-

mitted to ICCV 2009. 11

[Cour and Shi, 2007a] Cour, T. and Shi, J. (2007a). Recognizing objects by piecing to-

gether the segmentation puzzle. In Proceedings of the 2007 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. 11, 28

[Cour and Shi, 2007b] Cour, T. and Shi, J. (2007b). Solving markov random fields with

spectral relaxation. In Proceedings of the Eleventh International Conference on Artifi-

cial Intelligence and Statistics, volume 11. 11

[Cour et al., 2007] Cour, T., Srinivasan, P., and Shi, J. (2007). Balanced graph matching.

In Advances in Neural Information Processing Systems 19. MIT Press, Cambridge,

MA. 11

[Cover and Hart, 1967] Cover, T. and Hart, P. (1967). Nearest neighbor pattern classifi-

cation. IEEE Transactions on Information Theory, 13(1):21–27. 77

[Cowans and Szummer, 2005] Cowans, P. J. and Szummer, M. (2005). A graphical model

for simultaneous partitioning and labeling. In Proc. AI & Statistics. 120

165

[Crammer et al., 2001] Crammer, K., Singer, Y., Cristianini, N., Shawe-taylor, J., and

Williamson, B. (2001). On the algorithmic implementation of multiclass kernel-based

vector machines. Journal of Machine Learning Research, 2:2001. 19

[Crandall and Huttenlocher, 2006] Crandall, D. and Huttenlocher, D. (2006). Weakly su-

pervised learning of part-based spatial models for visual object recognition. Lecture

Notes in Computer Science, 3951:16. 26

[De Bie et al., 2004] De Bie, T., Suykens, J., and De Moor, B. (2004). Learning from

general label constraints. Lecture notes in computer science, pages 671–679. 24

[Della Pietra et al., 1997] Della Pietra, S., Della Pietra, V., Lafferty, J., Technol, R., and

Brook, S. (1997). Inducing features of random fields. IEEE transactions on pattern

analysis and machine intelligence, 19(4):380–393. 76

[Devroye et al., 1996] Devroye, L., Györfi, L., and Lugosi, G. (1996). A probabilistic

theory of pattern recognition. springer. 16

[Dietterich et al., 1997] Dietterich, T., Lathrop, R., and Lozano-Perez, T. (1997). Solv-

ing the multiple instance problem with axis-parallel rectangles. Artificial Intelligence,

89(1-2):31–71. 25

[Duygulu et al., 2002] Duygulu, P., Barnard, K., de Freitas, J., and Forsyth, D. (2002).

Object recognition as machine translation: Learning a lexicon for a fixed image vocab-

ulary. In ECCV, pages 97–112. 54

[Everingham et al., 2006] Everingham, M., Sivic, J., and Zisserman, A. (2006). Hello!

My name is... Buffy – automatic naming of characters in tv video. In BMVC. 2, 22, 33,

42, 46, 55, 95, 100, 103, 104, 130, 140, 142, 145, 148, 158

[Fan et al., 2008] Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J.

(2008). LIBLINEAR: A library for large linear classification. JMLR, 9:1871–1874.

67, 147

166

[Ferencz et al., 2006] Ferencz, A., Learned-Miller, E., and Malik, J. (2006). Learning to

locate informative features for visual identification. International Journal of Computer

Vision. 120

[Fergus et al., 2007] Fergus, R., Perona, P., and Zisserman, A. (2007). Weakly super-

vised scale-invariant learning of models for visual recognition. International Journal

of Computer Vision, 71(3):273–303. 26

[Fitzgibbon and Zisserman, 2002] Fitzgibbon, A. and Zisserman, A. (2002). On affine

invariant clustering and automatic cast listing in movies. Lecture Notes In Computer

Science, pages 304–320. 119

[Freund, 2001] Freund, Y. (2001). An adaptive version of the boost by majority algorithm.

Machine learning, 43(3):293–318. 21

[Freund and Schapire, 1999] Freund, Y. and Schapire, R. (1999). A short introduction to

boosting. Japonese Society for Artificial Intelligence, 14(5):771–780. 20

[Friedman et al., 2000] Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive lo-

gistic regression: a statistical view of boosting. Ann. Statist., 28:337–407. 20, 160

[Fung et al., 2007] Fung, G., Dundar, M., Krishnapuram, B., and Rao, R. (2007). Multi-

ple instance learning for computer aided diagnosis. In Advances in Neural Information

Processing Systems: Proceedings of the 2006 Conference, page 425. MIT Press. 26

[Gallagher and Chen, 2007] Gallagher, A. and Chen, T. (2007). Using group prior to

identify people in consumer images. In CVPR Workshop on Semantic Learning Appli-

cations in Multimedia. 55

[Gehler and Chapelle, 2007] Gehler, P. and Chapelle, O. (2007). Deterministic Annealing

for Multiple-Instance Learning. AISTATS07. 26

[Ghahramani, 2004] Ghahramani, Z. (2004). Unsupervised learning. Lecture Notes in

Computer Science, 3176:72–112. 14

167

[Godbole and Sarawagi, 2004] Godbole, S. and Sarawagi, S. (2004). Discriminative

methods for multi-labeled classification. Lecture Notes in Computer Science, pages

22–30. 27

[Goldberg et al., 2007] Goldberg, A., Zhu, X., and Wright, S. (2007). Dissimilarity in

graph-based semi-supervised classification. Artificial Intelligence and Statistics (AIS-

TATS). 25

[Goncalves and Quaresma, 2003] Goncalves, T. and Quaresma, P. (2003). A preliminary

approach to the multilabel classification problem of Portuguese juridical documents.

Lecture notes in computer science, pages 435–444. 27

[Grady and Funka-Lea, 2004] Grady, L. and Funka-Lea, G. (2004). Multi-label image

segmentation for medical applications based on graph-theoretic electrical potentials.

LECTURE NOTES IN COMPUTER SCIENCE, pages 230–245. 24

[Hastie et al., 2001] Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., and

Tibshirani, R. (2001). The elements of statistical learning. Springer New York. 16

[Huang et al., 2007a] Huang, G., Jain, V., and Learned-Miller, E. (2007a). Unsupervised

joint alignment of complex images. In International Conference on Computer Vision,

pages 1–8. 30

[Huang et al., 2007b] Huang, G., Jain, V., and Learned-Miller, E. (2007b). Unsupervised

joint alignment of complex images. In IEEE International Conference on Computer

Vision. 80

[Huang et al., 2007c] Huang, G., Ramesh, M., Berg, T., and Learned-Miller, E. (2007c).

Labeled faces in the wild: A database for studying face recognition in unconstrained

environments. Technical Report 07-49, University of Massachusetts, Amherst. 74, 80

[Hullermeier and Beringer, 2006] Hullermeier, E. and Beringer, J. (2006). Learning from

ambiguously labeled examples. Intell. Data Analysis, 10(5):419–439. 52, 77, 78

168

[Jin and Ghahramani, 2002] Jin, R. and Ghahramani, Z. (2002). Learning with multiple

labels. In NIPS, pages 897–904. 53, 76

[Joachims, 1999] Joachims, T. (1999). Transductive inference for text classification using

support vector machines. In Sixteenth International Conference on Machine Learning.

23

[Kender and Yeo, 1998] Kender, J. and Yeo, B. (1998). Video scene segmentation via

continuous video coherence. In IEEE Conference on Computer Vision and Pattern

Recognition. 36, 45

[Kohavi, 1995] Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy

estimation and model selection. pages 1137–1143. Morgan Kaufmann. 15

[Kondor and Jebara, 2003] Kondor, R. and Jebara, T. (2003). A kernel between sets of

vectors. In International Conference on Machine Learning. 144

[Lafferty et al., 2001] Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional

random fields: Probabilistic models for segmenting and labeling sequence data. In

International Conference on Machine Learning. 123

[Laptev et al., 2008] Laptev, I., Marszałek, M., Schmid, C., and Rozenfeld, B. (2008).

Learning realistic human actions from movies. In IEEE Conference on Computer Vision

and Pattern Recognition. 30

[Lewis, 2000] Lewis, R. (2000). An introduction to classification and regression tree

(CART) analysis. In Annual Meeting of the Society for Academy Emergency Medicine.

San Francisco, California. USA. 21

[Li et al., 2003] Li, S., Zhang, Z., Shum, H., and Zhang, H. (2003). FloatBoost learning

for classification. Advances in Neural Information Processing Systems, pages 1017–

1024. 20

169

[Li and Ogihara, 2003] Li, T. and Ogihara, M. (2003). Detecting emotion in music. In

Proceedings of the Fifth International Symposium on Music Information Retrieval,

pages 239–240. 27

[Lienhart, 2001] Lienhart, R. (2001). Reliable transition detection in videos: A survey

and practitioner’s guide. Int. Journal of Image and Graphics. 34

[Lin et al., 2008] Lin, C.-J., Weng, R. C., and Keerthi, S. S. (2008). Trust region newton

method for logistic regression. Journal of Machine Learning Research, 9:627–650. 67

[Maron, 1998] Maron, O. (1998). Learning from Ambiguity. PhD thesis, Massachusetts

Institute of Technology. 14

[Maron and Lozano-Pérez, 1998] Maron, O. and Lozano-Pérez, T. (1998). A framework

for multiple-instance learning. Advances in neural information processing systems,

pages 570–576. 26

[Maruyama et al., 2002] Maruyama, O., Shoudai, T., and Miyano, S. (2002). Toward

drawing an atlas of hypothesis classes: Approximating a hypothesis via another hypoth-

esis model. In DS ’02: Proceedings of the 5th International Conference on Discovery

Science, pages 220–232, London, UK. Springer-Verlag. 15

[Mermelstein, 1976] Mermelstein, P. (1976). Distance measures for speech recognition,

psychological and instrumental. Pattern Recognition and Artificial Intelligence, RCH

Chen, ed., Academic Press: New York, pages 374–388. 82

[Moreno et al., 1998] Moreno, P., Joerg, C., Thong, J., and Glickman, O. (1998). A re-

cursive algorithm for the forced alignment of very long audio segments. In Fifth Inter-

national Conference on Spoken Language Processing. ISCA. 82

[MOSEK ApS,] MOSEK ApS, D. The mosek optimization tools manual version 5.0

(revision 60). 67

170

[Myers and Rabiner, 1981] Myers, C. S. and Rabiner, L. R. (1981). A comparative study

of several dynamic time-warping algorithms for connected word recognition. In The

Bell System Technical Journal. 42

[Ngo et al., 2001] Ngo, C.-W., Pong, T.-C., and Zhang, H.-J. (2001). Recent advances in

content-based video analysis. International Journal of Image and Graphics, 1(3):445–

468. 34, 36

[Nowak and Jurie, 2007] Nowak, E. and Jurie, F. (2007). Learning visual similarity mea-

sures for comparing never seen objects. In CVPR. 120

[Proakis and Manolakis, 1996] Proakis, J. and Manolakis, D. (1996). Digital signal pro-

cessing: principles, algorithms, and applications. Prentice-Hall, Inc. Upper Saddle

River, NJ, USA. 82

[Qi et al., 2007] Qi, G., Hua, X., Rui, Y., Tang, J., Mei, T., and Zhang, H. (2007). Correl-

ative multi-label video annotation. In Proceedings of the 15th international conference

on Multimedia, pages 17–26. ACM New York, NY, USA. 27

[Quinlan, 1986] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning,

1(1):81–106. 15

[Ramanan et al., 2007] Ramanan, D., Baker, S., and Kakade, S. (2007). Leveraging

archival video for building face datasets. In International Conference on Computer

Vision. 30, 55, 118, 120, 131, 134, 135, 142

[Satoh et al., 1999] Satoh, S., Nakamura, Y., and Kanade, T. (1999). Name-it: Naming

and detecting faces in news videos. IEEE MultiMedia, 6(1):22–35. 55, 142

[Schapire, 1997] Schapire, R. (1997). Using output codes to boost multiclass learn-

ing problems. In MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN

CONFERENCE-, pages 313–321. MORGAN KAUFMANN PUBLISHERS, INC. 27

171

[Schapire and Freund, 1997] Schapire, R. and Freund, Y. (1997). A decision theoretic

generalization of on-line learning and an application to boosting. J Comput Syst Sci,

55:119–139. 21, 27

[Schapire and Singer, 1999] Schapire, R. and Singer, Y. (1999). Improved boosting algo-

rithms using confidence-rated predictions. Machine learning, 37(3):297–336. 20, 21,

27

[Schroeder, 2004] Schroeder, M. (2004). Computer speech: recognition, compression,

synthesis. Springer. 82

[Sivic et al., 2005] Sivic, J., Everingham, M., and Zisserman, A. (2005). Person spotting:

video shot retrieval for face sets. In International Conference on Image and Video

Retrieval (CIVR 2005), Singapore. 33, 118

[Sjlander, 2003] Sjlander, K. (2003). An hmm-based system for automatic segmentation

and alignment of speech. In In Proceedings of Fonetik 2003, pages 93–96. 82

[Smith, 2005] Smith, T. J. (2005). An Attentional Theory of Continuity Editing. PhD

thesis, University of Edinburgh. 119

[Steinwart, 2007] Steinwart, I. (2007). How to compare different loss functions and their

risks. Constructive Approximation, 26(2):225–287. 16

[Talkin, 1995] Talkin, D. (1995). A robust algorithm for pitch tracking (RAPT). Speech

coding and synthesis, pages 495–518. 82

[Torralba et al., 2006] Torralba, A., Murphy, K., and Freeman, W. (2006). Shared features

for multiclass object detection. Lecture Notes in Computer Science, 4170:345. 160

[Turk and Pentland, 1991] Turk, M. and Pentland, A. (1991). Face recognition using

eigenfaces. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 1991. Proceedings CVPR’91., pages 586–591. 80

172

[Vapnik, 1995] Vapnik, V. N. (1995). The nature of statistical learning theory. Springer-

Verlag New York, Inc., New York, NY, USA. 18, 23

[Viola and Jones, 2004] Viola, P. and Jones, M. (2004). Robust real-time face detection.

International Journal of Computer Vision, 57(2):137–154. 21, 46, 156

[Viola et al., 2006] Viola, P., Platt, J., and Zhang, C. (2006). Multiple instance boosting

for object detection. Advances in neural information processing systems, 18:1417. 26

[Wang et al., 2008] Wang, J., Zhao, Y., Wu, X., and Hua, X. (2008). Transductive multi-

label learning for video concept detection. 27

[Wang and Zucker, 2000] Wang, J. and Zucker, J. (2000). Solving the multiple-instance

problem: A lazy learning approach. In MACHINE LEARNING-INTERNATIONAL

WORKSHOP THEN CONFERENCE-, pages 1119–1126. 26

[Watkins, 1999] Watkins, C. (1999). Dynamic alignment kernels. Advances in large

margin classifiers. 144

[Weston, 1998] Weston, J. (1998). Multi-class support vector machines. Technical report.

19

[Wof and Shashua, 2003] Wof, L. and Shashua, A. (2003). Kernel principal angles for

classification machines with applications to image sequence interpretation. In IEEE

Conference on Computer Vision and Pattern Recognition, volume 1. 144

[Wolpert, 1992] Wolpert, D. (1992). Stacked generalization. Neural networks, 5(2):241–

259. 27

[Yan et al., 2004] Yan, R., Zhang, J., Yang, J., and Hauptmann, A. (2004). A discrimi-

native learning framework with pairwise constraints for video object classification. In

CVPR, pages 284–291. 25, 144, 147

173

[Yeung et al., 1998] Yeung, M., Yeo, B.-L., and Liu, B. (1998). Segmentation of video

by clustering and graph analysis. Comp. Vision Image Understanding. 36

[Zhai and Shah, 2006] Zhai, Y. and Shah, M. (2006). Video scene segmentation using

markov chain monte carlo. IEEE Transactions on Multimedia, 8(4):686–697. 36

[Zhang, 2004] Zhang, T. (2004). Statistical analysis of some multi-category large margin

classification methods. J. Mach. Learn. Res., 5:1225–1251. 57, 61

[Zhou and Zhang, 2007] Zhou, Z. and Zhang, M. (2007). Multi-instance multi-label

learning with application to scene classification. Advances in Neural Information Pro-

cessing Systems, 19:1609. 14

[Zhu et al.,] Zhu, J., Rosset, S., Zou, H., and Hastie, T. Multi-class adaboost. Ann Arbor,

1001:48109. 21, 27

[Zhu,] Zhu, X. Semi-supervised learning literature survey. world, 10:10. 14

[Zhu et al., 2003] Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). Semi-supervised

learning using Gaussian fields and harmonic functions. In MACHINE LEARNING-

INTERNATIONAL WORKSHOP THEN CONFERENCE-, volume 20, page 912. 24

174

