
Talking Pictures: Temporal Grouping and Dialog-Supervised Person Recognition

Supplemental material

This supplement presents:

• Additional details on the Viterbi decoding.

• Proof of proposition 3.1.

• Description of the reference classifier.

• Additional qualitative results for temporal grouping.

• Proof of linear time complexity for stump selection.

1. Viterbi algorithm implementation details

We explain how to implement the dynamic programs
(DP) on lines 315 and 332. The optimal score sj(yj) of
a sequence-consistent partition up to j, ending with yj can
be computed with the following recursion:

sj(yj) : = max
y1..yj−1:y1∼y2...∼yj

∑
i=1..j

gy
i

(xi)

= max
yj−1:yj−1∼yj

sj−1(yj−1) + gy
j

(xj), ∀j > 1

with s1(y1) = gy
1
(x1). The DP table is computed in

O(n · Bk+1), with Bk states and ≤ Bk+1 transitions per
column. The backward pass takes O(n) time.
For the cardinality constrained partition, we use the aug-
mented states and transitions described in the paper and
initialize the DP table with s1(y1, c) = gy

1
(x1) for c =

|y1| and −∞ otherwise. The DP table is computed in
O(n2 · Bk+1), with n · Bk states and ≤ n · Bk+1 transi-
tions per column. The backward pass takes O(n) time per
requested partition size.

2. Proof of proposition 3.1

Given that `(yi, y) ≥ 0 and ψ(z) ≥ 1(z ≤ 0),

`i(g) = `(yi, arg max
y

gy(xi))

≤
∑
y∈Y

`(yi, y)1(gy
i

(xi) ≤ gy(xi))

≤
∑
y∈Y

`(yi, y)ψ(gy
i

(xi)− gy(xi))) �

3. Reference classification in dialogue

We trained a classifier to determine whether a given ref-
erence (i.e. mention of a character name) corresponds to a
1st, 2nd or 3rd person reference, or none of the above. We
matched proper nouns in the subtitles to the cast list and
extract features centered around the name occurrence. For
training the classifier we use 500 downloaded screenplays
from TV shows and movies (excluding the ones we test on)
as follows: we automatically label groundtruth by aligning
subtitles with the screenplay, which indicates who is speak-
ing, and who else is present in the scene, from which we
can infer the type of reference. For features, we calculated
the 1,000 most frequent unigrams/bigrams in the vicinity
of 2 tokens from the reference, including punctuation. We
used 6,000 features, each corresponding to an occurrence of
a unigram or bigram in a particular position w.r.t. the ref-
erence. We also hand-labeled 300 examples to validate our
system and achieved 79.3% accuracy.

4. Additional qualitative results

Figure 1 shows the tracks extracted from a test episode,
Lost Season 1 episode 5 (reads columnwise). There are typ-
ically very few false positive face tracks (just one track in
this episode, appearing in its own cluster as cluster #3 in
figure 2).

Figure 2 shows the result of our temporal grouping on
this episode. The main failure modes are for poorly lit
scenes, where appearance cues are less reliable. Face reg-
istration errors also lead to errors in grouping, for example
cluster 54 in figure 2 should be merged with the previous
face track which is ill-registered. In our model, two consec-
utive elements i, j in a cluster are within a distance at most
k − 1 (if their distance was ≥ k, linking them would have
no impact on the score function defined on consecutive win-
dows of size k, so we don’t by convention). So our model
can potentially link face tracks (of, say, Jack) that are very
far apart, so long as at least one face track of Jack appears
every k − 1 track in between them. For long dialog scenes
or scenes involving few but recurring people (less than k),
our model will perform best as tracks of a given person can
be merged across long periods of time. And if tracks do
get split apart over time, the subsequent name assignment
can still merge them based on the learned face appearance
model.

1

5. Proof of linear complexity for stump selec-
tion

We show the complexity mentioned on line 422, i.e. that
at each round of boosting we can select the optimal de-
cision stump across all feature dimensions and thresholds
in linear time O(d · n · Bk), and in fact, requires a sin-
gle pass over the data1. In comparison a naive approach
would require O(d · (n ·Bk)2) time (in the case of standard
boosting, a common trick based on sorting would bring it
to O(d · n ·Bk log(n ·Bk)), but our non-standard boosting
form requires more care; and we even bring it down to lin-
ear). We adapt gentle Adaboost [1] (Algorithm 4, page 353)
to our setting: at each boosting round we update the linear
classifier gy(x) with the weak learner hy(x) that minimizes
the second order Taylor expansion of L(g), leading to:

min
h
Ei,y[hy

i

(xi)− hy(xi)− 1]2, (1)

where Ei,y[·] denotes expectation over (i, y) ∈ {1..n} ×
Y weighted by `(yi, y)ψ

(
gy

i

(xi)− gy(xi)
)

. An apparent
difficulty compared to [1] is the coupling introduced by
the difference term h(xi, yi)− h(xi, y), which introduces
a non-linear cross-term in equation (3) below.

Using decision stumps of the form h(x, y) = a ·
1(fj(x, y) ≤ θ) + b · 1(fj(x, y) > θ) we seek the best
feature dimension j, threshold θ, and parameters a, b. No-
tice we can set b = 0 since adding a constant term to h(x, y)
doesn’t change the objective. For a fixed j this leads to:

min
a,θ

E
[
a(F̄ θ − F θ)− 1

]2
= min

θ
1− E2[F̄ θ − F θ]

E[F̄ θ − F θ]2
(2)

with F θi,y = 1(fj(xi, y) ≤ θ), F̄ θi,y = 1(fj(xi, yi) ≤ θ).

The ratio can be computed without reevaluating the ex-
pectations for all values of θ using that F̄ θ, F θ are binary,
and the trick ¯̄F θi,y = 1(max(fj(xi, yi), fj(xi, y)) ≤ θ):

E[F̄ θ − F θ]2 = E[F̄ θ]2 + E[F̄ θ]2 − 2E[F̄ θF θ] (3)

= E[F̄ θ] + E[F̄ θ]− 2E[¯̄F θ], (4)

Now that we have linearized the denominator (the numer-
ator is easier), the final trick for computing the optimal
θ efficiently is to use a form of bucket sort, discretizing θ
into a set of regularly spaced discrete values θ1...θT (with
T < nBk). In a single pass over the data of size n · Bk
per feature dimension j, we compute the weighted counts
Ei,y[1(fj(xi, y) ∈ [θt, θt+1))] and similar terms, and then

1Our proof in particular applies with little modification to the easier
setting of standard boosting with d feature dimensions and n training sam-
ples: we replace a O(dn log n) complexity with a O(dn) complexity, at
the expense of discretizing the possible thresholds over which we optimize.

we compute in O(T) the corresponding cumulative sums.
From this we can deduce the optimal (discretized) θ from
equation (2) in O(T). The overall running time is just
O(d · n ·Bk), a huge speedup over the naive approach. �

References
[1] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:

a statistical view of boosting. Ann. Statist., 28:337–407, 2000. 2

Figure 1. Original ordering of face tracks on Lost Season 1 episode 5 (reads columnwise, and shows the central face in each face track).
Blue shows two consecutive face tracks with same identity (either because of two consecutive shots showing a same person, or because of
face track was interrupted).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Figure 2. Grouping results for the face tracks on figure 1 (reads columnwise). Blue represents bad splits, red represents bad merges
(compared to groundtruth). We have reordered faces according to their cluster id (shown as a white rectangle). The number of clusters is
fixed to be 30% of the total number of face tracks, as in the paper.

