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Abstract

We address the character identification problem in
movies and television videos: assigning names to faces on
the screen. Most prior work on person recognition in video
assumes some supervised data such as screenplay or hand-
labeled faces. In this paper, our only source of ‘supervi-
sion’ are the dialog cues: first, second and third person
references (such as “I’m Jack”, “Hey, Jack!” and “Jack
left”). While this kind of supervision is sparse and indirect,
we exploit multiple modalities and their interactions (ap-
pearance, dialog, mouth movement, synchrony, continuity-
editing cues) to effectively resolve identities through local
temporal grouping followed by global weakly supervised
recognition. We propose a novel temporal grouping model
that partitions face tracks across multiple shots while re-
specting appearance, geometric and film-editing cues and
constraints. In this model, states represent partitions of the
k most recent face tracks, and transitions represent com-
patibility of consecutive partitions. We present dynamic
programming inference and discriminative learning for the
model. The individual face tracks are subsequently as-
signed a name by learning a classifier from partial label
constraints. The weakly supervised classifier incorporates
multiple-instance constraints from dialog cues as well as
soft grouping constraints from our temporal grouping. We
evaluate both the temporal grouping and final character
naming on several hours of TV and movies.

1. Introduction
We address the problem of learning to name characters

in movies and television with minimal supervision. The
ability to accurately determine who is on the screen for the
vast amounts of unannotated videos opens up the possibil-
ity of a number of applications such as large-scale index-
ing, retrieval and summarization. In several recent papers
[5, 8, 2, 3], a screenplay and closed captions are used to
name characters by essentially using the knowledge of who
is speaking and when to associate names to faces using tem-
poral overlap and mouth motion.

Figure 1. Diagram of prior and current work on character naming.
When screenplay is not available, we know what is being said but
not who said it. The only source of name information is from
dialog cues: first, second and third person references (See text).

When you watch a movie, consider how you are able to
infer characters’ names. Without ever being given direct
supervision (e.g., a cast list with head shots) or weaker an-
notation (e.g., a screenplay), you can infer identities based
on rare occurrences of first, second and third person ref-
erences (e.g., “I’m Jack”,“Hey, Jack”, and “Jack left.”, re-
spectively), and implicitly apply these identities to other
occurrences throughout the movie based on visual appear-
ance and speech (e.g., “the woman with brown hair” or “the
man with a raspy voice”). In addition, you may rely on
movie structure to aid in resolution: character occurrences
on screen often alternate during dialogs, and when a new
scene begins, a new set of characters is usually present.

In this work, we do not assume that a screenplay or any
special annotation is available, but instead integrate natural
dialog and movie structure cues to automatically name the
people present in a video. The only input we assume is what
is typically available to the movie-goer: the video and sub-
titles or closed captions1. We also use an automatically ex-
tracted cast list from IMDB website to extract unique identi-
fiers for characters in the video, although this is not crucial
to our approach2. Eliminating dependence on screenplays
(which are not necessarily available) allows broad applica-
tion of our method to video collections fully automatically.
This contrasts to prior work that requires either manual an-
notation or name references extracted from a screenplay in
order to provide training examples (see figure 1).

1The need for subtitles could be avoided with reliable speech recogni-
tion. Fortunately, such transcriptions are frequently available.

2Name references in dialog are mapped to the closest name in the cast
list using string edit distance.
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Hey, Jack. What is it, Hurley? We're out 
of water.

This is all 
that's left.

I saw Kate 
drinking earlier.
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Figure 2. Overview of our approach: we model a movie or TV
show as a sequence of face tracks ordered temporally, which we
group into a smaller number of clusters. We then combine those
grouping cues with gender cues and weak supervision from name
references in the dialog to resolve identities globally.

There are several difficult challenges caused by the lack
of screenplays. Essentially, we know what is being said, but
not who said it. In addition, first, second, and third person
references in the dialog are extremely sparse and often am-
biguous. To overcome these challenges, we propose a two
phase approach for naming characters. In the first phase,
we detect and cluster a sequence of face tracks into a small
number of groups. In the second phase, we resolve iden-
tities of individual face tracks using 1st, 2nd and 3rd person
references as weak supervision, as well as gender cues and
grouping cues obtained in the first phase, see figure 2.

To help us in our task, we exploit the rich structured
information present in video arising from film-editing.
Movies and TV series are typically edited according to a set
of conventions, aimed at creating the perception of “con-
tinuity” across a shot cut (see [12] for an excellent intro-
duction to the topic). A number of these rules can be used
as (soft) constraints for grouping people by identity, see ta-
ble 1. For example, the 180◦ rule implies that a charac-
ter will consistently appear on the left (or right) side of the
screen throughout a scene whenever two characters are vis-
ible. Likewise, two consecutive shots typically show a dif-
ferent character before and after the cut, especially when
there are only two people in the scene.

Intra-Scene Cues Description
# actors per scene Average scene has few characters
180◦ rule Relative position of actors stays constant
shot alternation Consecutive shots show different actors
2 faces per frame Two faces in a frame are different people

Table 1. Grouping cues within a scene, see text for details.

In this paper, we propose a novel temporal grouping
model (sections 3 - 5) that groups faces based on not only
appearance but also on local film-editing cues. In this
model, states represent partitions of the k most recent face
tracks, and transitions represent compatibility of consecu-
tive partitions. We present dynamic programming inference
and discriminative learning for the model. The face tracks
are subsequently assigned a name by learning a classi-

fier from partial label constraints derived from dialog (sec-
tions 6 - 7). The weakly supervised classifier incorporates
multiple-instance constraints from dialog cues as well as
grouping constraints from our temporal grouping. We eval-
uate both the temporal grouping and final character naming
on several hours of TV and movies.

To summarize, our main contributions are: (1) the first
fully automatic system for character naming in video; it
uses dialog in the common case when screenplay is not
available, and (2) a temporal grouping model that may be
of independent interest, which incorporates arbitrary non-
pairwise cues including novel film-editing cues.

2. Related work
Identity resolution. Most prior work on character nam-
ing in video assumes additional supervised or weakly su-
pervised data. A screenplay is used in [5, 3] to align faces
to dialogues using mouth motion cues, from which we can
deduce the identity of the speaker by aligning screenplay
and closed captions. In [10], the authors use grouping cues
at different time scales to form increasingly large clusters of
faces. However, they use groundtruth annotations to assign
names to clusters. The authors of [1] automatically clus-
ter images aided by text coming from associated captions.
Video and closed-captions are used in [11] to name peo-
ple in televised news broadcasts via a simple co-occurrence
score with extracted labels.
Grouping. Regarding our temporal grouping approach,
there is a large body of related work on metric learning and
learning to cluster in different applications; a few applica-
ble techniques include [9, 7]. In general, these approaches
are limited in that they only model pairwise interactions,
rather than arbitrary interactions in a larger local neighbor-
hood. Furthermore, global distance functions are forced to
generalize to a wide variety of situations. We believe our
approach of learning how to cluster locally is more effec-
tive. Related recent work [4] proposes a graphical model
for simultaneous partitioning and labeling of graphs with
low tree-width, and models labeled partitions. The setting
is significantly different, however, relying on pairwise in-
teractions for a binary labeling task.
Face representation. A number of visual cues can be used
for grouping faces together. In [10], the authors distinguish
cues at different time scales. At the shortest time scale,
within a shot, they cluster faces based on tracking. At the
medium time scale, within a scene, they use hair, torso and
face color histograms. Across episodes, they rely more on
facial appearance as the other cues are no longer reliable.

3. Temporal grouping
One of the main challenges for naming individual face

tracks is the inherent sparsity of name references in dia-



log. Our goal in this section is to group face tracks so as
to ultimately 1) propagate name references to all faces in
a group, and 2) encourage a labeling of individual faces
that is consistent with the grouping. Ideally we would like
to find a minimal number of groups such that face tracks
within a group correspond to a single person. Our character
naming classifier learned in section 6 uses the clustering as
soft constraints, and therefore can recover from grouping er-
rors such as a group containing two distinct characters. By
incorporating appearance cues and continuity editing cues
into our model, we are able to improve the performance of
both the grouping and the final character naming.

We model a movie as a linear sequence of face tracks
{xi}ni=1, ordered temporally using the first face in each
track (as shown in figure 2, ties are broken based on the
position of such faces). As an example, a typical 45-minute
TV show contains approximately 500 face tracks in the se-
quence. Track i is associated with a character name label zi

out of a set of L possible characters in the episode (known
a priori using a cast list).

A plausible approach to the grouping problem would be
to learn a sequence model over the set of labels {1..L},
for example using a kth-order Conditional Random Field
(CRF) to model local interactions within k consecutive face
tracks. The number of states at each position during infer-
ence would be Lk, and the number of transitions Lk+1—
prohibitively expensive even for moderate values of k. In
practice, we would like to capture long-range interactions
within a scene (typically spanning 10 consecutive shots),
thus be able to incorporate constraints arising form shot al-
ternation and scene structure. Such approach is an overkill
for our grouping task, where we only care about whether
two given faces are the same, regardless of their label.

3.1. Local partitions

In our approach, we address this issue by represent-
ing local partitions (denoted as Pk) instead of local la-
belings for each k consecutive elements. The number of
partitions of k elements is much smaller than the number
of possible labelings. It is given by the kth Bell number
Bk =

∑k−1
i=0

(
k−1

i

)
Bi, with B1 = 1 (see table 2). Even

with only L = 4 labels (compared to 20 characters in a typ-
ical TV show), we haveBk/L

k ≤ 0.1 for any k ∈ {2...10}.
This allows us to capture rich long range interactions.

k 3 4 5 6 7 8 9 10
Bk 5 15 52 203 877 4140 21147 105

4k 64 256 1024 4096 16384 65536 3 · 105 106

Table 2. Bk: number of partitions of k elements, representing our
state space. This is much more compact than a standard sequence
labeling state space over a neighborhood of k elements, even with
a very small label set (L = 4).

We propose to learn a model which enumerates the set
of possible partitions for a local window of face tracks and
predicts a partition based on appearance and video editing
cues and constraints. In particular we are able to capture
scene-level interactions such as shot alternation in dialogues
or co-occurence of two faces, see section 4.

There are many ways to represent partitions. For k = 3,
we have 5 possible partitions: using set notation these are
{(1, 2, 3), (1, 2)(3), (1)(2, 3), (1, 3)(2), (1)(2)(3)}. The or-
der inside and outside the parenthesis is irrelevant, for ex-
ample (2, 3)(1), (3, 2)(1), and (1)(3, 2) represent the same
partition. A more convenient notation is to associate to a
partition y ∈ Y a matrix Y ∈ {0, 1}k×k such that Yij = 1
if i, j are in the same cluster, which represents an equiva-
lence relationship, a illustrated in figure 3. We will use y
and Y interchangeably.

Figure 3. Matrix representation of all 5 partitions of size k = 3.
Each pair of elements (representing face tracks) can either be same
(S) or different (D), yielding different clusterings. Cluster labels
are represented by colors along the diagonal.

3.2. Global partitioning inference

The partition classifier we learn in section 3.3 can incor-
porate rich, non-additive, local cues for windows of size up
to 10 face tracks in practice. We are interested here in pro-
ducing a consistent grouping of face tracks across the entire
sequence by integrating the predictions of the partition clas-
sifier on local windows. We define a sequence-consistent
partition to be collection of partitions on overlapping win-
dows that agree on their grouping decisions on the overlap.
Figure 4 illustrates this concept.

Figure 4. Consistency between partitions of successive windows of
size k = 4 are enforced. Same/different relationships for elements
2,3,4 must be the same as elements 1,2,3 in the next window.

More formally, we say that y and y′ are consistent, de-
noted as y ∼ y′, if their matrix representations Y, Y ′ verify:

∀u, v ∈ {1..k − 1}, Yu+1,v+1 = Y ′uv (1)

Note, this relation is transitive but not symmetric. A
sequence-consistent partition of elements x = {x1, . . . xn}
is a set of n − k + 1 partitions yi of corresponding sets



xi = {xi, . . . , xi+k−1}, with consistency between consec-
utive partitions: ∀i, yi ∼ yi+1. Given a scoring function on
local partitions gyi

(xi) (learned in section 3.3), we seek the
optimal sequence-consistent partition:

y∗ = arg max
y1∼y2...∼yn−k+1

∑
i

gyi

(xi).

y∗ can be found via a standard Viterbi-like dynamic
program whose running time is O(n · Bk+1), as it is easily
shown that the number of consistent consecutive partitions
is ≤ Bk+1 (see supplement for details). Note that y
itself defines a valid partition on the set x1, . . . , xn, as a
consequence of the running-intersection property.

Cardinality-constrained partition. The dynamic program
defined above finds a single solution. In practice it is useful
to have control over the number of clusters in the partition,
which allows us to compare two different partitioning algo-
rithms (or sets of parameters) for a fixed number of clusters.
We extend our framework to compute the optimal C-way
partition, for any C ∈ {1..n}:

y∗C = arg max
y1∼y2...∼yn−k+1

∑
i

gyi

(xi) s.t. |y| = C (2)

where |y| denotes the cardinality of partition y, i.e. its num-
ber of clusters. To this end we augment the state-space in
the dynamic program to (y, c), where c ∈ {1..n} represents
the number of clusters seen so far. We define (y, c) and
(y′, c′) to be consistent if the following holds:

(y, c) ∼ (y′, c′) if

{
y ∼ y′

c′ − c = 1(
∑k−1

u=1 Yuk = 0)

The second condition states that c′ = c when y′ groups
its last element k with at least one of elements {1..k − 1},
and c′ = c + 1 if the last element falls in its own clus-
ter, thereby incrementing the total count of clusters seen so
far. We compute the optimal C-way partition with dynamic
programming, using the augmented states (y, c) and com-
patible transitions. A single dynamic programming table
can be used to retrieve optimal C-way partitions for all val-
ues of C. Each one requires a decoding pass, starting from
the best scoring state (y∗, C∗) in the last table column that
satisfies C∗ = C.

3.3. Learning to partition

We cast the problem of learning to partition as a struc-
tured multiclass classification problem. The input is a set
of instances x = {x1, . . . , xk} and the output is a partition
y ∈ Y = Pk. The number of classes |Pk| = Bk is large
but structured. We assume that each input output pair is de-
scribed by a d-dimensional feature mapping f(x, y) ∈ Rd.

The features we use are based on pairwise relations between
items in the partition, such as the maximal RGB distance
between images grouped together, or global, such as the
number of clusters in the partition, see section 4. We as-
sume a linear classifier of the form

g∗(x) = arg max
y

gy(x), where gy(x) = w · f(x, y)

where w ∈ Rd is the set of parameters which we will es-
timate from a set of n labeled partitions {(xi, yi)}. The
corresponding loss function is

`(g) =
∑

i

`i(g) with `i(g) = `(yi, g∗(xi)), (3)

where the individual loss `(yi, y) : Y × Y 7→ R+ might
depend on the structure of the partition. For example, if
the true partition is {(1, 2)(3, 4)}, then a predicted partition
{(1, 2)(3)(4)} might be penalized less than {(1)(2, 3)(4)}
since it is closer to the truth. There are several natural met-
rics for measuring the quality of a predicted partition with
respect to the true partition. For example, precision and
recall with respect to same/different relationships is often
used. Another metric involves mapping true clusters to pre-
dicted clusters by a majority vote in each cluster, and com-
puting the number of mis-matches. We choose the follow-
ing expression, which allows to penalize differently splits
and merges compared against groundtruth:

`(yi, y) =αmerge

∑
u<v

1(Y i
uv = 0 and Yuv = 1)

+(1− αmerge)
∑
u<v

1(Y i
uv = 1 and Yuv = 0)

where the binary matrices Y, Y i refer to partitions y, yi and
1(·) is the indicator function. We set αmerge = 0.1 in our
experiments based on validation data.
A convex learning formulation. We propose to estimate
w by minimizing a convex upperbound on the loss func-
tion (3). Let ψ(z) be a standard convex binary loss such as
exponential, logistic or hinge, which is decreasing and up-
perbounds the step function 1(z ≤ 0). We define a convex
loss function as L(g) =

∑
i Li(g), where

Li(g) =
∑
y∈Y

`(yi, y)ψ
(
gyi

(xi)− gy(xi)
)
.

The following proposition (proved in the supplement)
states that L(g) is a (convex) upperbound on `(g).

Proposition 3.1 `i(g) ≤ Li(g).

Optimization with boosting. In our experiments, we use
the exponential loss ψ(z) = exp(−z) and minimize the ob-
jective with boosting using decision stumps as weak clas-
sifiers, minimizing a second order Taylor expansion along



the optimal coordinate at each boosting round. We show in
the supplement how to select the optimal stump across all
feature dimensions and thresholds in only O(d · n ·Bk) per
boosting round, which is not obvious.

4. Grouping cues
Our representation can encode any type of local cues or

constraints defined in a neighborhood of size ≤ k, and can
depend on both the input and a proposed labeling. We de-
fine base features by computing several types of pairwise
distances d(xi, xj) for each pair of face tracks xi, xj in a
window of size k, and computing statistics over those. We
condition on the proposed labeling, distinguishing whether
the pair of face tracks lies in the same cluster (Yij = 1):

fsame(x, y) = s({d(xi, xj)}i,j:Yij=1) (4)
fdifferent(x, y) = s({d(xi, xj)}i,j:Yij=0) (5)

where s(·) aggregates statistics over its inputs: we compute
the mean, the sum, the max, and the min. The latter two
statistics are non-additive and thus cannot be reduced to a
sum of pairwise interactions. We present below the different
types of distance functions d(xi, xj) used, based on stan-
dard appearance cues and novel video editing cues. These
are tuned automatically using section 3.3. We could define
many other features on y or (x,y) but decided to keep our
feature set relatively simple to compare to previous work.

4.1. Appearance cues

Best registered face. In a preprocessing stage, each face is
registered using 4 control points (eyes, nose and mouth), us-
ing a method similar to [5]. For each face track we take the
best face as determined by registration score of the 4 con-
trol points, and represent it in the following color spaces:
RGB, LAB, and the separate channels R,G,B,L,A,B. We
use L1 norm as a distance for these color spaces fc,
dregistered(xi, xj) = ||fc(xi)− fc(xj)||1.
Color histograms. Following [10], we also use color his-
tograms for face, hair, torso. Figure 5 displays a set of
frames from the TV show Buffy the Vampire Slayer with
face detections and torso/hair rectangles we use to compute
the color histograms. We define dhair(·, ·), dtorso(·, ·) and
dface(·, ·) using χ2-distance.
Exemplars. Again following [10], we also represent each
track with 5 exemplars using Principal Components Anal-
ysis (PCA)—estimate PCA components from all our data
and project our examples onto the first 50 components. A
difference between our approach and [10] is that we first
register faces. The distance between 2 tracks is the min-
imum distance between all pairs of exemplars across the
tracks: dexemplar(xi, xj) = minkl ||ek

i − el
j ||2, where ek

i

is exemplar k for track i (likewise for el
j).

Figure 5. Example frames from the TV show Buffy.
Face/hair/torso rectangles are shown for appearance cues.
Red arrows mark do-not-group cues between face tracks ap-
pearing in the same frame. Blue arrows and “L < R” labels
indicate connections between face tracks resulting from the 180◦

rule which dictates that faces remain in the same left to right
ordering in a scene and more weakly, they often remain in the
same horizontal portion of the screen.

Gender. We trained a gender classifier by collecting
200, 000 images via Google Image search, querying for
common male and female names. These were registered as
before and used to train a gentleboost classifier with Haar
features, whose accuracy on a hold-out set was 83% (code
will be made available). For each track we compute the re-
sulting mean, max, and median gender score over the track,
before defining distances dgender(·, ·) between tracks.

4.2. Video editing cues

A key contribution of our model is the ability to encode
interesting local editing cues. We define the following addi-
tional distances based on such cues, illustrated in figure 5.
Relative positioning of faces. Based on the 180◦ rule,
we compute distances and signed distances based on the x
and y coordinates of the mean face position in each track,
dposition(·, ·). We also compute a corresponding distance in
log-scale for the mean face size in a track.
Relative difference in pose. People tend to look in oppo-
site directions in typical dialogue scenes. Hence, for each
facial part of the best-registered face, we compute relative
distances in x and y coordinates (after registration), provid-
ing information about the difference in pose.
Shot distance. Shot alternation is a strong cue for group-
ing. We provide 2 features based on shot distance. One is
absolute difference in shot id, determined beforehand using
a conservative shot-segmenter. The second is L1 distance
in color histograms in LAB space for a whole frame, accu-
mulated over every frame in each face track. Eight bins per
channel (83 total bins) were used.
Track overlap. Another simple but effective cue is whether
two tracks ever overlap in time (i.e. there is a frame for
which faces from both tracks appear at the same time).
These tracks should clearly not be merged.

5. Results for temporal grouping
We train our temporal grouping model using The Office

(US) Season 2 Episode 5, a 1.5 hour episode. This pro-
vides us with 1273 (overlapping) windows of 7 consecu-
tive face tracks for training data. On a validation episode,



we observe that clustering accuracy increases with the win-
dow size, and choose k = 7 for computational reasons (see
figure 6, right). We evaluate our temporal grouping on 6
episodes of the TV show Lost, 1 episode of Buffy the Vam-
pire Slayer and the movie Misery. We compare to the fol-
lowing baselines:

Baseline 1 is a global agglomerative method proposed
by Ramanan et al. [10]. Briefly, this uses the same features
as we employ, each associated with its own distance func-
tion (dhair, dtorso, dface and dexemplar described in Sec-
tion 4). Logistic regression is used to learn the best weight-
ing of these distances, and we feed the weighted distance
function into an agglomerative clustering algorithm.

Baseline 2 is a simple agglomerative method: each track
i is modeled with one representative face exemplar in LAB
color-space `i, and we use an L2-norm distance function
between 2 tracks i and j: d(i, j) = ||`i − `j ||2.

In all results, we measure performance as a tradeoff be-
tween the number of clusters (x-axis) versus the purity of
the clustering (y-axis). Purity for a clustering is defined as
prediction accuracy of names assigned by using the most
frequent true name in a cluster.

In figure 7 we show our performance against the 2 base-
lines. There is an inherent tradeoff between global meth-
ods (such as the baselines) and our method. While we can
model rich local interactions of a label sequence, it is dif-
ficult to merge things that are temporally distant, even if
they are perceptually very similar. Global clustering, on
the other hand, is unconstrained by temporal distance but
cannot perform as well when local clustering is challeng-
ing. Our method performs best in a high precision regime
in which the number of clusters is relatively high, and the
precision is close to perfect. This type of behavior will aid
in the naming task to come.

We also analyze the efficacy of features via ablative anal-
ysis in figure 6. Starting with our full feature set, we sequen-
tially remove sets of features and note the decay in perfor-
mance. The features in [10] clearly help, but are signifi-
cantly improved by adding the gender and editing cues.

6. Dialog-supervised person recognition
We now go back to our original motivation of naming

characters using references in dialogue as only source of
weak supervision. Our task is to predict the label z ∈
{1..L} corresponding to the name of a character in a face
track x. In order to simplify our evaluation, we assume the
label set known using automatically extracted cast list from
IMDB website. Note, we only use the list of names and
their associated gender from this website. We build our for-
mulation on a simple and general one-against-all multiclass
scheme of the form:

z = arg max
a

ga(x), (6)
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Figure 6. Clustering purity (y-axis) vs number of clusters (x-axis).
Left: ablative analysis of the features in our model, on Lost Season
1 Episode 5. The biggest gains are obtained from adding gender
and face location and scale. Right: performance as we vary the
local partition window size k. We chose k = 7 in our experiments.

where ga(x) = wa · f(x) is a linear function parameterized
by weight vector wa ∈ <d for each class label a ∈ {1..L},
f(x) ∈ <d is a feature vector for input face track x, de-
scribed in section 7. If we had access to labeled examples
(x, z), with za a {+1,-1} indicator of the class label, one
common solution would be to encourage zaga(x) > 0 by
minimizing the following convex upperbound on the corre-
sponding 01-loss (where ψ(·) denotes some convex loss):

Lsupervised(g) =
∑
i,a

ψ(za
i g

a(xi)) (7)

In our partial supervision setting however, we have no
labeled examples and therefore cannot rely on such super-
vised learning schemes. Instead we only have constraints
on the possible labels for each face track, summarized in ta-
ble 3. The constraints are of 3 kinds: grouping constraints,
1st and 2nd reference constraints, and label exclusion con-
straints from 3rd person references and gender predictions.
A) Grouping. This constraint has the form: zi = zj for
consecutive face tracks xi, xj that are in a same cluster, as
found by our previous temporal grouping3.
B) 1st and 2nd reference. If we observe the utterance “Hey
Jack” (classified as 2nd reference, see section 7) at time t,
we assume that some face track xi in the temporal neigh-
borhood of t will have label z = Jack4. The neighborhood
is defined as all clusters of face tracks which contain a face
within 10 seconds of time t (converted to frame number).
This is a type of multiple instance (MI) constraint of the
form ∃i ∈ S : zi = a for a label a and a set of face tracks S
associated to a reference.
C) Exclusion. This is a negative label constraint of the
form: zi 6= a, and comes from either a 3rd person refer-
ence or from gender. Firstly, for an utterance classified as

3The number of must-link constraints is n − C, where n = #face
tracks, C = # clusters which we set to C = 0.3 · n using section 3.2

4One could refine this rule using mouth motion cue[5], at the cost of
introducing additional errors
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Figure 7. Grouping results versus global methods. C? refers to the number of correct labels. TG? denotes the optimal number of clusters
temporal grouping can achieve via inference with a scope of size k = 7. AUC denotes the area under each curve from TG? to the total
number of face tracks, normalized so that the area for each episode sums to 1.

3rd person reference such as “Jack left” at time t, we assume
that neighboring face tracks cannot have the label a corre-
sponding to Jack. Secondly, if the average score of a face
track xi according to our gender classifier exceeds a thresh-
old θM (M for Male), we add a label constraint zi 6= a for
each label a corresponding to a female (F) name, and a sim-
ilar rule applies in the opposite case with some θF < θM

5.
We encode these label constraints with a unified frame-

work, based on combining convex losses on linear combi-
nations of the score ga(x). Our combined loss function is:

L(g) =
∑
i,a

Li,a
excl.(g) +

∑
i,j

Lij
link(g) +

∑
S,a

LS,a
MI (g)

Li,a
excl.(g) = ψ(−ga(xi)) (8)

Lij
link(g) =

∑
a∈{1..L}

ψ̄(ga(xi)− ga(xj)) (9)

LS,a
MI (g) = ψ(

1
|S|
∑
i∈S

ga(xi)), (10)

where each term expresses a constraint: (8) for zi 6= a,
(9) for zi = zj , and (10) for ∃i ∈ S : zi = a. We use
ψ̄(u) = ψ(u) + ψ(−u) for some convex loss ψ(·). In our
experiments, we use the square hinge loss, which is differ-
entiable. Note, (8) and (9) are standard formulations[13],
but we believe (10) is a novel way to express a multiple
instance constraint in a convex formulation. Intuitively,
this term encourages at least one of ga(xi) (i ∈ S) to
be positive while allowing for the others being negative.
In contrast, the simpler term

∑
i∈S ψ(ga(xi)) would

encourage all of ga(xi) (i ∈ S) to be positive.

Optimization. We convert minimization of our convex loss
L(g) into a standard L2-loss binary Support Vector Ma-
chine, which we solve using liblinear [6]. In our naming ex-
periments, running time is about 30 seconds for 3,000 face

5We set θF and θM to achieve 90% precision on a validation set

constraint example # constraint
screenplay line JACK: “Hey”. 750 zi = a

1st person ref “I’m Jack” 20 ∃i ∈ S : zi = a
2nd person ref “Hey, Jack” 60 ∃i ∈ S : zi = a
3rd person ref “Jack left” 30 zi 6= a
gender(M/F) M score> θM 400 zi 6= a,∀a ∈ F

grouping track clusters 400 zi = zj

Table 3. Without screenplay supervision (top), we use constraints
on possible labels for our weakly supervised character naming
based on dialogue, gender and grouping cues. We show their oc-
currences per episode averaged over 16 episodes of Lost, and the
resulting type of constraint. a is a label (e.g. Jack), zi the pre-
dicted label of a face track, S a set of face tracks in the temporal
neighborhood of the reference.

tracks, 300 features, and 55 labels (names from the cast list
that are mentioned by at least one dialogue reference).

7. Character naming results
We run our grouping and naming system on 8 episodes of

the TV show Lost. MI constraints described in the previous
section are propagated throughout clusters. Thus, for any
tuple of face tracks with a MI constraint (for example, the
constraint “zi = a ∨ zj = a” for a pair i, j and label a), we
also add other tuples of face tracks from the corresponding
clusters (in our example, zi′ = a∨zj′ = awith (i, i′) in one
cluster and (j, j′) in another cluster), subsampling at most
200 out of all possible combinations. The final decision for
each face track xi in some cluster S is determined using
majority vote (arg maxa

∑
j∈S g

a(xj)). We fix the number
of clusters output by our grouping algorithm to 30% of the
total number of face tracks in each episode, using section
3.2. We extract references by matching words in the subtitle
to the cast list, and determine reference type (1st, 2nd, 3rd)
via a discriminative classifier, described in the supplement.
Features. We use the following features f(x) for character
naming: a face track x is described by its best face (c.f. reg-
istration score), using 100 PCA components for the whole
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Figure 8. Left: Results for naming across 8 episodes of Lost, con-
taining a total of 55 possible labels. “prior” is the most common
character. “ours” uses gender, grouping, and reference constraints
propagated through grouping. Right: Each curve is obtained by
replacing only the mentioned component with its perfect counter-
part: “perfect temporal grouping” uses the best clustering possible
with k = 7. “perfect gender” and “perfect reference classifica-
tion” use groundtruth information. “perfect temporal grouping and
reference association” applies each reference to its closest correct
neighbor, and adds exclusion constraints for negative neighbors.

pre-registered face, and 50 PCA components per part (eyes,
nose and mouth) using 15× 15 patches.
Evaluation. We measure performance of our system in a
“refusal to predict” scheme inspired by [5]. At a given con-
fidence threshold, we measure how accurately the system
names characters in examples above the threshold (preci-
sion) versus how many examples pass the threshold (recall).
Confidence for an example is measured as the difference be-
tween the best and second best scores over all classifiers ga.
Results are shown in figure 8, left, evaluated on the 10 most
frequent characters in 8 episodes of Lost.

We see that the cues provided by grouping, references,
and gender help tremendously in the performance of our
system. For the top 10% (resp. 50%) most confident scores,
our accuracy is 80% (resp. 60%), compared to the base-
line of 15% described in figure 8. Our results are quite en-
couraging and suitable for retrieval applications, which only
require high precision at low recall. Given the wide appli-
cability of our method, this could be used for large-scale
content-based video search. Those results obviously are not
as good as the ones reported in [5, 3], since we are not using
a screenplay. In our case, supervision provided by dialog is
much lower and noisier, see table 3.

In figure 8, right, we also compare the quality of our
naming system by replacing various components with their
equivalent “perfect” counterparts: assuming perfect cluster-
ing (TG∗ in figure 7), gender classification, reference clas-
sification or association of references to face tracks.

8. Conclusion

To our knowledge, this work is first to address the prob-
lem of character identification in video without the use of a

screenplay, which opens the possibility of name-based re-
trieval in general video collections without human interven-
tion. We propose a novel temporal grouping model to group
face tracks locally with high precision and we then learn
to identify characters using weak supervision provided by
cues from references in the dialog, gender, and grouping.
We present a novel way to integrate these cues as multiple
instance constraints in a convex formulation. Our end-to-
end system provides the first quantative results and analysis
on naming without screenplay. We are releasing6 code and
data for gender classification, inference/learning in the par-
tition model and for the optimization problem in section 6.
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