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Abstract

Markov Random Fields (MRF) are commonly used in computer vision and maching learn-
ing applications to model interactions of interdependant variables. Finding the Maximum
Aposteriori (MAP) solution of an MRF is in general intractable, and one has to resort to
approximate solutions. We review some of the recent literature on convex relaxations for
MAP estimation. Our starting point is to notice the MAP estimation (a discrete prob-
lem) is in fact equivalent to a real-valued but non-convex Quadratic Program (QP). We
reformulate some of those relaxations and see that we can distinguish two main strategies:
1) optimize a convex upper-bound of the (non-convex) cost function (L2QP, CQP, our
spectral relaxation);
2) reformulate as a linear objective using lift-and-project and optimize over a convex
upper-bound of the (non-convex) feasible set (SDP, SOCP, LP relaxations).

We analyse these relaxations according to the following criteria: optimality condi-
tions, relative dominance relationships, multiplicative/additive bounds on the quality of
the approximation, ability to handle arbitrary clique size, space/time complexity and
convergence guarantees. We will show a few surprising results, such as the equivalence
between the CQP relaxation (a quadratic program) and the SOCP relaxation (containing
a linear objective), and furthermore show that a large set of SOCP constraints are implied
by the local marginalization constraint.

Along the way, we also contribute a few new results. The first one is a 1
kc−1 multi-

plicative approximation bound for an MRF with arbitrary clique size c and k labels, in
the general case (extending the pairwise case c = 2). The second one is a tighter ad-
ditive bound for CQP and LP relaxation in the general case (with k = 2 labels), that
also has the big advantage of being invariant to reparameterizations. The new bound
involves a modularity norm instead of an `1 norm. We also show that a multiplicative
bound δ for the LP relaxation would imply δ ≤ 1

2 (for k = 2), putting LP on par with
other convex relaxations such as L2QP. Finally we characterize the equivalence classes of
a (broader) class of reparameterizations, show their dimension, and how a basis can be
used to generate potentially tigher relaxations. We believe those contributions are novel.
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Chapter 1

Introduction

A number of problems in Computer Vision and Machine Learning can be formulated in
a probabilistic setting using Markov Random Fields (MRF). Classical examples include
stereo vision, image restoration, image labeling and graph matching. In each case, a set of
interdependent variables can be assigned a range of labels, with a probability attached to
each joint assignment. Inference in such a graphical model consists in finding the config-
uration with maximum a posteriori probability (MAP). In general, the inference problem
is intractable, but there are interesting cases where it can be solved in polynomial time,
such as tree-structured MRF (or with bounded tree-width), with a single cycle and binary
variables, with convex priors[1], or binary MRF with submodular clique potentials[2].

MRFs have been studied extensively since the 1970’s, and a lot of work has been
focused on developping approximation algorithms for the MAP problem. Bayesian meth-
ods such as Belief Propagation (BP)[3, 4], Generalized BP and Tree Reweighted BP[5]
are optimal in trees as well as certain graphs with cycles. In the general case, when the
max-product version of BP converges, the assignment is guaranteed to be locally optimal
in a large neighborhood[4]. However, there is no general convergence guarantee and BP
may fail to converge even in simple graphs. Energy Minimization methods such as Graph
Cuts[6, 2] have been successfully applied to early vision applications, often on planar
graphs with nearest neighbor connectivity. For binary MRFs with submodular clique po-
tentials, Graph Cuts are provably optimal. For multiple label MRFs, [6] introduces α−β
swaps and α expansion moves that find solutions which are locally optimal with respect
to large moves, but with some restrictions on the clique potentials.

We review in this report some of the recent literature on convex relaxations for MAP
estimation, including L2QP[7, 8], CQP[9], our spectral relaxation[10], SDP[11], SOCP[12,
13], and LP[14, 15] relaxations. We start by showing that MAP estimation (a discrete
problem) is in fact equivalent to a real-valued but non-convex Quadratic Program (QP).
We reformulate some of these relaxations and see that two main strategies emerge:
1) optimize a convex upper-bound of the (non-convex) cost function (L2QP, CQP, our
spectral relaxation);
2) reformulate as a linear objective using lift-and-project and optimize over a convex
upper-bound of the (non-convex) feasible set (SDP, SOCP, LP relaxations).

We will encounter a few recurring themes underlying those relaxations. One such
theme is the convexity of the MAP value in terms of MRF parameters, which forms the

1



basis for decomposition techniques such as TRW and Dual Decomposition for MRF. We il-
lustrate in fact a parallel between tree decomposition techniques for max-marginals/MAP
estimation, and the planar graph decomposition for estimating sum-marginals and the
partition function. A second recurring theme concerns reparameterizations, which encode
equivalence classes of MRF parameters. One can view message-passing updates alterna-
tively as reparameterizations, or as fixed-point updates for the dual variables of the LP
relaxation. We reformulate certain convex relaxations (CQP, L2QP, spectral relaxation)
as seeking a best reparameterization.

We analyse the relaxations mentioned above according to the following criteria: op-
timality conditions, relative dominance relationships, multiplicative/additive bounds on
the quality of the approximation, ability to handle arbitrary clique size, space/time com-
plexity and convergence guarantees. We will show a few surprising results, such as the
equivalence between the CQP relaxation (a quadratic program) and the SOCP relaxation
(containing a linear objective), and furthermore show that a large set of SOCP constraints
are implied by the local marginalization constraint.

Along the way, we also contribute a few new results. The first one is a 1
kc−1 multiplica-

tive approximation bound for an MRF with arbitrary clique size c and k labels, in the
general case. The second one is a tighter additive bound for CQP and LP relaxation in
the general case (with k = 2 labels), that also has the big advantage of being invariant to
reparameterizations. The new bound involves a modularity norm instead of an `1 norm.
We also show that a multiplicative bound δ for the LP relaxation would imply δ ≤ 1

2
(for k = 2), putting LP on par with other convex relaxations such as L2QP. Finally we
characterize the equivalence classes of a (broader) class of reparameterizations, show their
dimension, and how a basis can be used to generate potentially tigher relaxations.
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Chapter 2

Markov random field

We review in this section the notion of Markov random field and its representation using
the exponential family. Let G = (V,E) be an undirected graph with nodes i ∈ V and
edges (i, j) ∈ E. We attach a discrete random variable Xi ∈ {0, ..., k − 1} to each node
i with k the common number of labels (we can assume WLOG a uniform label set). We
denote the concatenation of all variables as X = (Xi)i∈V and XA = (Xi)i∈A the restriction
to a subset A ⊂ V .

Definition 2.0.1 (Markov random field). A Markov random field (MRF) models the
joint probability distribution p(X) of a collection of random variables having the Markov
property w.r.t. a graph G: ∀i, p(Xi|XV−{i}) = p(Xi|xNi), where Ni denotes the neighbors
of i (Markov blanket).

The Hammersley-Clifford theorem states that for a positive MRF, p(X) factorizes
according to the cliques of the graph:

p(X) =
∏
c∈C

exp(Φc(X)), (2.0.1)

where C is the set of maximal cliques of the graph and Φc depends only on Xc. We
represent X using a binary random variable x = (xia) with xia = 1 if Xi = a and∑

a xia = 1. We decompose the potential functions Φc(X) using a basis φ(x) = (φα(x))α∈I
and a parameter vector θ, so that the MRF is represented with the exponential family:

p(x, θ) ∝ exp(〈θ, φ(x)〉) = exp(
∑
α∈I

θαφα(x)) (2.0.2)

In the remainder we assume that the positivity condition (p(x) > 0) is satisfied and that
the MRF invovles interactions between at most pairs of variables (pairwise MRF)1. We
will adress the higher order clique size in section 6. We can represent the MRF using the
canonical overcomplete representation:

φ(x) = {xia : i ∈ V, a ∈ {0, ..., k−1}}∪{xiaxjb : (i, j) ∈ E, (a, b) ∈ {0, ..., k−1}2} (2.0.3)

1General MRFs can be converted to that form, see [16]
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Thus, any pairwise positive MRF defined over G can be represented via some θ ∈ Rd

with d = k|V |+ k2|E|. Note, it is no longer a basis because of linear constraints such as∑
a xia = 1. An important consequence is that an MRF can be represented equivalently

by a whole subspace of exponential parameters.

2.1 Maximum Aposteriori (MAP) inference

The MAP inference problem is to maximize p(x, θ) over all feasible (discrete) assignments:

φ∞(θ) = max
x feasible

〈θ, φ(x)〉 (2.1.1)

Computing MAP estimates is the central problem in many applications, such as image
processing, segmentation, labeling. In general finding the exact MAP is NP-hard, but
there are important cases where the problem is tractable, such as for trees[5], for graphs
with bounded tree-width, for graphs with a single cycle and binary variables[17], for
supermodular potentials with binary variables[2], see section 8.1.

2.2 Other related inference and learning problems

There are other important inference problems besides MAP estimation, such as computa-
tion of marginals, max-marginals, and the partition function. In general those problems
are equally intractable and require approximate solutions, but there are strong parallels
between those problems. The max-product message passing algorithm for computation
of max-marginals has its exact analog, sum-product, for computation of marginals. No-
table tractable cases include trees, planar graphs with no interaction field and binary
variables[18]. The latter paper provides another interesting parallel between estimation
of max-marginals or MAP using convex combinations of trees on the one hand, and esti-
mation of marginals or the partition function using convex combinations of planar graphs.

Several learning tasks are intimately coupled with inference, and certain tractable
models such as Associative Markov Networks[19] allow for effective max-margin discrimi-
native learning. For intractable models, the approximate MAP estimation we will review
can provide the basis to develop efficient learning algorithms.
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Chapter 3

Preliminaries

3.1 Exact formulations and other non-convex approxima-
tion algorithms

Before introducing the convex relaxations, we mention the existence of a general algo-
rithm for exact MAP estimation, the junction tree algorithm. The algorithm works in
essentially 3 steps: 1) triangulate the graph, 2) compute a junction tree, and 3) perform
belief propagation on the tree, which computes the MAP. The applicability of junction
tree algorithm depends on the tree-width, or size of the largest clique obtained in the
junction tree. For certain non-tree graphs such as k − fan graphs, the algorithm is the
recommended solution. We are concerned here with the general case, for which junction
tree is intractable.

There are a number of proposed strategies and heuristics for approximating the MAP,
such as Iterative Conditional Modes[20], Relaxation Labeling, branch and bound, and
other search algorithms. Those algorithms have either no approximation guarantee (local
minima) or no bound on the running time. Instead we will focus on convex approxima-
tions, that optimize a convex upper bound of the problem. Those algorithms have both
approximation guarantees and a polynomial-time complexity. We will see that, while off-
the-shelf solvers can be used for the resulting convex program, in practice it is judicious to
develop specialized algorithms such as message passing, fixed point updates or Sequential
Minimal Optimization (SMO) to name a few techniques.

3.2 Convexification of the objective vs convexification of
the domain

There are a number of proposed convex relaxations to the MAP problem: linear pro-
gramming, semidefinite programming, second-order cone programming, convex quadratic
programming, spectral relaxation, L2QP relaxation (equivalent to a geometric program).
We distinguish two broad categories according to whether the cost function is quadratic
(section 4) or linear (section 5). We will see that in fact relaxations in the first category
all compute a convex upper-bound of the objective. On the other hand, relaxations in the
second category all compute a hierarchy of successive convex upper bounds of the feasible
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set using lift-and-project reformulation: marginal polytope MARG(G), semidefinite cone
SDP (G), second order cone SOCP (G), local marginal polytope LOCAL(G).

We present here some of the main recurring themes underlying the convex relaxations
for the MAP problem.

3.3 Reparameterization

As noted previously, the exponential family for MRF is an overcomplete representation:
there are multiple ways to encode the same cost function. We define the following equiv-
alence relation, denoted as reparameterization:

θ ≡ θ′ ⇐⇒ ∀x feasible, 〈θ, φ(x)〉 = 〈θ′, φ(x)〉 (3.3.1)

The flexibility offered by reparameterization is at the core of a number of the algorithms
we will present: L2QP, CQP, spectral relaxation, dual formulation of the LP relaxation. In
particular, we will see that tree-reweighted message-passing updates correspond to repa-
rameterizations. A natural question that arises is whether or not a particular relaxation
is invariant to reparameterizations; we will address this question is section 8.6.

Another important question concerns the equivalence classes of this relation. We have
characterized them precisely in [21] and showed that they are subspaces of dimension
|V |(k2 + k + 2)/2, where we also allow terms of the form: θia,ib. Thus any reparameteri-
zation can be uniquely represented by a set of |V |(k2 + k + 2)/2 free parameters, which
correspond to Lagrangian dual variables in our formulation [21]. We showed how we can
recover L2QP, CQP, spectral relaxation and other ones simply by optimizing an upper
bound over different subsets of those free parameters.

3.4 Convexity of the MAP as function of the parameters

A central idea behind tree relaxation [5] and dual decomposition for MRF [22] is that the
MAP value is a convex function of the parameters θ, allowing one to decompose the MRF
into smaller, tractable subproblems for which we can compute the MAP, and then combine
the solutions to approximate the original MAP. We will explore thos ideas in section 7,
and show the connection with the above mentioned LP relaxation. Interestingly, the same
idea is used in [18] for the problem of estimating the partition function or the marginals,
but planar graphs are used as the tractable building blocks instead of trees.

3.5 Criteria to assess the different relaxations

We will analyse the different relaxations in terms of optimality guarantees, bounds on
the quality of the approximation, relative dominance relations and importance of each
particular constraint. We will also adress numerical issues such as time/space complexity
and convergence properties.
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Chapter 4

Quadratic relaxations to the MAP

4.1 Integer Quadratic Programming formulation (IQP)

We represent the constraint
∑

a xia = 1 as Cx = 1 for some matrix C, and introduce
the nk × nk matrix W as Wiajb = θia,jb and the nk × 1 vector V as Via = θia. WLOG,
we can assume W symmetric. The MAP problem is equivalent to the following Integer
Quadratic Programming (IQP):

max ε(x) = xTWx+ V Tx, s.t. Cx = 1, x ∈ {0, 1}nk (4.1.1)

In general this IQP is NP-hard, and approximate solutions are needed. An interesting
yet counterintuitive fact is that we can remove the discrete constraint without changing
the problem, as we shall see in the next section. First, let us introduce some notations.

Definition 4.1.1 (Definitions). We define the following constraint sets, where n = |V |:
Ωa = {x ∈ Rnk : Cx = 1} (affine set)
Ωs = Ωa ∩ Rnk

+ (standard simplex)
Ωd = Ωa ∩ {0, 1}nk (discrete set)
Ω2 = {x ∈ Rnk

+ :
∑

i x
2
ia = 1} (`2-sphere set)

Note, we have the following inclusions: Ωd ⊂ Ωs ⊂ Ωa and Ωd ⊂ Ω2 defining relaxations
to the feasible points of the IQP, Ωd.

4.2 QP formulation

The QP relaxation relaxes the set Ωd to Ωs in (4.1.1):

max ε(x), s.t. Cx = 1, 0 ≤ x ≤ 1 (4.2.1)

Proposition 4.2.1 (QP is equivalent to IQP). Suppose Wiaib = 0,∀i, a, b, all other entries
in W being unconstrained. Then from any x ∈ Ωs, we can construct efficiently xd ∈ Ωd

such that ε(xd) ≥ ε(x). As a corollary, maxx∈Ωs ε(x) = maxxd∈Ωd ε(xd) and (4.2.1) is
equivalent to (4.1.1).
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See [8, 9] for a proof or [10] for a more general result. This proposition will be used
to prove optimality bounds.

4.3 Convex quadratic programming relaxation (CQP)

In [9], the authors approximate the QP (4.2.1) with a Convex quadratic programming
relaxation (CQP) by using the following reparameterization: they replace (W,V ) with
(W − diag(D), V + D) where D is a vector such that W − diag(D) � 0. They propose
D = |W |1 (row-sum of the absolute values) to make diag(D) −W diagonally dominant
(ensuring W − diag(D) � 0), but other choices are possible. The associated cost function
is:

εCQP (x) = xT(W−diag(D))x+V +DTx = ε(x)+
∑
α

Dα(xα−x2
α) = ε(x)+

∑
α,β

|Wα,β|(xα−x2
α)

(4.3.1)
the last equality follows from the particular choice of D. It is indeed an upper bound
on ε(x): for x ∈ Ωs, xα − x2

α ≥ 0 and Dα ≥ 0. The resulting quadratic program can be
solved with Iterative Conditional Modes[20], or more efficiently with projected conjugate
gradient ascent[23]. Note, the conditions of proposition 4.2.1 do not apply anymore since
we have subtracted terms from the diagonal.

In [9] the authors claim that proposition 4.2.1 can be used to show the MAP problem
is solvable in polynomial time if the edge parameter matrix W is negative definite. We
show that this is in fact impossible: under the conditions of 4.2.1, by looking at all 2× 2
principal minors, we see that in fact the only semidefinite negative matrix with 0 on the
diagonal is 0.

A discrete solution can nevertheless be recovered efficiently by applying proposition
4.2.1 to the original parameterization (W,V ) starting from the continuous solution of
(W − diag(D), V +D). This gives the following additive bound:

Proposition 4.3.1 (additive bound for CQP). Let x be the optimal solution for the
convex QP parameterized with (W − diag(D), V +D). Then one can efficiently compute
a discrete solution xd such that ε(xd) ≥ maxΩd ε − 1

4D1. When D = |W |1, the additive
bound is 1

4 ||W ||1 (tight bound).

See [9] for the proof.

4.3.1 Improving the additive bound

Note, there are other possible choices for D than the one suggested in [9], for example
D = λmax[W ]1 leads to and additive bound of n

4λmax[W ]. In our experiments, this choice
provides a better bound when W is sparse and contains both positive and negative terms,
which is a common case. Based on proposition 4.3.1, the best possible bound can be
formulated as:

min
D

DT1 s.t. W − diag(D) � 0 (4.3.2)

whose dual is the following SDP, where strong duality holds:

max
X

tr(WX) s.t. X � 0, diag(X) = I (4.3.3)

8



4.4 L2QP relaxation

In [7, 8], the authors relax the IQP as:

max ε(x) s.t.
∑
a

x2
ia = 1 (4.4.1)

and make the assumption that W,V are nonnegative (we can always add a constant
term to each Wia,jb, Via with i 6= j without changing the discrete optimal configurations).
Geometrically, the constraint set is changed from a product of simplices Ωs to a product
of `2 spheres Ω2 (hence the name L2QP). We can instead reinterpret L2QP as a convex
upper bound on ε(x): define εL2QP (x) = ε(

√
(x)) with the original constraint set x ∈ Ωs

(equivalent to
√

(x) ∈ Ω2). Then εL2QP (x) ≥ ε(x) since W,V are nonnegative and√
(x) ≥ x on Ωs. Furthurmore, computing the Hessian of each monomial reveals that

εL2QP is concave. Note, this is also equivalent to a geometric program as we can safely
relax the equality constraint to an inequality, and because εL2QP is a posynomial.

4.4.1 Optimization using Lagrangian duality

Introducing lagrange multipliers λi for each site constraint
∑

a x
2
ia = 1, the lagrangian is:

L(x, λ) = ε(x) +
∑
i

λi(
∑
a

x2
ia − 1) (4.4.2)

By linear independance constraint qualification we have the following KKT conditions:
∃x∗ ∈ Ω2, ∃λ ∈ Rn :

∀ia, dε

dxia
(x∗) + 2λix∗ia = 0 (4.4.3)

Since
∑

a x
∗2
ia = 1 we can eliminate λi and x∗ must satisfy the following fixed point

equation:

x∗ = pΩ2 [Wx∗ +
1
2
D] (4.4.4)

where pΩ2 [x] is the orthogonal projection of x onto Ω2, defined as pΩ2 [x]ia = xia√P
a x

2
ia

(site-wise `2 normalization). Notice the strong similarity with the fixed-point equation
used in the power method:

x∗ = punit sphere[Wx∗] (4.4.5)

This is not surprising, since the (normalized) leading eigenvector of a symmetric matrix
W maximizes xTWx subject to a (single) unit-sphere constraint. Moreover, we have
an analog of Perron-Frobenius theorem which guarantees convergence of the fixed point
iterates (4.4.5) to a unique point x ≥ 0 in the unit sphere when W is nonnegative and
irreducible:

Proposition 4.4.1. When W is irreducible (and still assuming W,V nonnegative), (4.4.4)
has a unique fixed-point, which is the unique maximizer of (4.4.1).

This is a special case of theorem 5 in [7].
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4.4.2 Discretization and optimality bounds

We can compute a multiplicative bound using the following: let x∗ = arg maxΩ2 ε, and
xs = pΩs [x∗] where pΩs [x] is a projection of x onto Ωs, defined as pΩs [x]ia = xiaP

a xia
∀x > 0

(site-wise `1 normalization). As shown in [8], xs verifies ε(xs) ≥ 1
k ε(x

∗) ≥ 1
k maxΩd ε.

Finally using the rounding scheme of proposition 4.2.1, we can compute efficiently xd ∈ Ωd

with ε(xd) ≥ 1
k maxΩd ε.

4.5 Spectral Relaxation

In [10] we proposed the following relaxation:

εspectral(x) =
ε(x)
D(x)

(4.5.1)

D(x) =
xTx+ β

n+ β
(4.5.2)

with some constant β > 0. We showed that on Ωs, εspectral(x) ≥ ε(x); furthermore we
converted maxx∈Ωa εspectral(x) to an equivalent eigenvalue problem, whose dual is convex
and where strong duality holds. This also interprets εspectral(x) as a convex upper bound
on ε(x) (as long as the maximizer is ≥ 0 to stay in Ωs, see [10]). We also proposed
data-dependant and data-independant optimality bounds and showed that they exactly
matched the ones for L2QP.

10



Chapter 5

Linear relaxations to the MAP

We can rewrite the QP (4.2.1) equivalent to the MAP with a (linear) matrix inner product:
ε(x) = xTWx+V Tx = X •W+V Tx = ε(x,X) (by abuse of notation) with Xia,jb = xiaxjb
∀(i, j) ∈ E. Define Mindep(G) as:

Mindep(G) = {(x,X) : x ∈ Ωs, Xia,jb = xiaxjb∀(i, j) ∈ E} (5.0.1)

All the relaxations we present below relax the non-convex constraint Xia,jb = xiaxjb. This
results in a hierarchy of feasible sets with increasingly looser approximations. We also
have φ(Ωd) ⊂ Mindep(G) as can be verified by taking Xia,jb = xiaxjb = φia,jb(x) for any
x ∈ Ωd.

5.1 Linear Programming on the Marginal Polytope

Given some MRF p(·) = p(·, θ) over G, we define the marginal probabilities for each node
and each edge as follows:

µia = Eθ[xia] =
∑
x∈X

p(x, θ)xia (5.1.1)

µia,jb = Eθ[xiaxjb] =
∑
x∈X

p(x, θ)xiaxjb (5.1.2)

More compactly, µ = Eθ[φ(x)] ∈ Rd with d the dimension of θ. We define the marginal
polytope MARG(G) as the set of all feasible marginals µ computed from some MRF
p(·) = p(·, θ) over G:

MARG(G) = {µ ∈ Rd : ∃θ ∈ Rd : µ = Eθ[φ(x)]} (5.1.3)

By definition, MARG(G) is also the convex hull of {φ(x) : x ∈ X}, hence the name
(convex) polytope. We have the following results, which we generalize in section 6:

Mindep(G) ⊂ MARG(G) (5.1.4)
max
x∈Ωd

ε(x) = max
µ∈MARG(G)

〈θ, µ〉 (5.1.5)

11



According to the Minkowski-Weyl theoremit can be written as an intersection of half-
spaces: MARG(G) = {µ ∈ Rd : Aµ ≤ b} for some constraint matrix A and vector b. A, b
are hard to express in general (when G is arbitrary), and so this formulation is mostly of
theoretical importance.

5.2 Linear programming relaxation (LP)

In the linear programming formulation[14, 15] we only keep a polynomial sized (in |V |, |E|
and the number of labels) number of affine constraints (equality or inequality), denoted
as AFFINE(G). One commonly used set of constraints, used in [5], define exhaustive
local consistency constraints on edges of the graph G:

LOCAL(G) = {(x,X) : X ≥ 0,
∑
a

xia = 1,
∑
a

Xia,jb = xia,
∑
b

Xia,jb = xjb} (5.2.1)

We can interpret (x,X) as pseudomarginals, since they approximate elements inMARG(G),
and the last 2 constraints as marginalization constraints. An important result coming
from the junction tree decomposition is that for trees, MARG(G) = LOCAL(G), but in
general MARG(G) ( LOCAL(G).

There are at least two ways to solve the resulting linear program: one is via a generic
LP solver such as mosek, which scales to mid-sized instances. Another is via message-
passing algorithms, which attempt to solve the dual of the LP, as we will see in section
7.

5.3 Semidefinite programming relaxation (SDP)

The SDP relaxation [11] attempts to tighten the LP relaxation. We introduce a symmet-
ric matrix X to represent the terms Xia,jb = xiaxjb and relax the non-convex constraint
X = xxT with the semidefinite constraint X � xxT. Using Schur’s complement, this
amounts to: [

X x
xT 1

]
� 0 (5.3.1)

Note, we have introduced variables of the form Xia,jb for (i, j) /∈ E in this representation,
and so we introduce the projection pG(X) = (Xia,jb : (i, j) ∈ E) for comparison with
other relaxations. We define SDP (G) as the set of (x, pG(X)) where (x,X) satisfies
(5.3.1) (with X symmetric). We have:

MARG(G) ⊂ SDP (G) ∩AFFINE(G) ⊂ AFFINE(G) (5.3.2)

The semidefinite program max(x,X)∈SDP (G)∩AFFINE(G)X•W+V Tx offers a good approx-
imation of the MAP solvable in polynomial time, but requires expensive SDP solvers that
often don’t scale beyond a thousand variables. Another main drawback is that the num-
ber of variables is squared (compared to the QP formulation), and cannot take advantage
of the sparsity of the graph, as opposed to the LP relaxation.
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5.4 Second-order cone programming relaxation (SOCP)

The SOCP relaxation [12, 13] proposes a more efficient method than SDP relaxation by
further relaxing X � xxT to X • S ≥ (xxT) • S = xTSx for a suitable polynomial-sized
set of positive semidefinite symmetric matrices S ∈ S+. Using the fact S = UUT for some
U we can rewrite the constraint as:

xTUUTx ≤ X • S (5.4.1)
⇐⇒ ||UTx||2 ≤ X • S (5.4.2)

⇐⇒ ||
[

1−X • S
2UTx

]
|| ≤ 1 +X • S (5.4.3)

where the last inequality shows the equivalence to an explicit SOCP constraint. In [12, 13]
the authors choose the set of SOCP constraints given by matrices U as follows:

(U) = {eα, eα + eβ, eα − eβ : α = ia, β = jb, (i, j) ∈ E} (5.4.4)

where (eα) is the canonical basis. The corresponding SOCP constraints are:

x2
α ≤ Xα,α (5.4.5)

(xα + xβ)2 ≤ Xα,α +Xβ,β + 2Xα,β (5.4.6)
(xα − xβ)2 ≤ Xα,α +Xβ,β − 2Xα,β (5.4.7)

We can simplify these by using the constraint Xα,α = xα (representing x2
α = xα for

the discrete case) to eliminate the diagonal terms Xα,α, and then by eliminating the
first constraint, since it is equivalent to x ∈ [0, 1]. We finally obtain, after algebraic
manipulations:

|Xα,β − xαxβ| ≤
1
2

(xα − x2
α + xβ − x2

β) (5.4.8)

We define SOCP (G) be the set of (x,X) satisfying those constraints. With those local
constraints we have reduced the number of variables from (|V |k)2 down to |V |k + |E|k2,
using the same variables as in the LP relaxation1.

5.5 Additional affine constraints

In any of the linear relaxations (LP, SDP, SOCP) we can also add the following triangular
inequalities to AFFINE(G) to tighten the relaxation: ∀α, β, γ,

xα + xβ + xγ ≤ Xα,β +Xβ,γ +Xγ,α

xβ ≥ Xα,β +Xβ,γ −Xγ,α (and circular permutations)
(5.5.1)

1Note, this is a simpler, but equivalent presentation compared to [13], in which the authors used the
range [-1,1] instead of [0,1].
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They can be verified using a truth table for binary variables, and are equivalent to the
ones used in [13] with the range [-1,1]. We can define the following sets of affine constraints
for AFFINE(G):

LOCAL1(G) = {(x,X) : x ∈ Ωs} (5.5.2)
LOCAL2(G) = LOCAL(G) see (5.2.1) (5.5.3)
LOCAL3(G) = LOCAL2(G) ∩ {(x,X) : (5.5.1) is satisfied } (5.5.4)

LOCAL+∞(G) = MARG(G) see (5.1.3) (5.5.5)

In each case LOCALp(G) only considers equalities/inequalities supported by at most p
vertices in the graph. We have the following inclusions of polytopes LOCAL+∞(G) ⊂
LOCAL1(G) ⊂ LOCAL3(G) ⊂ LOCAL2(G) ⊂ LOCAL1(G). We will use those defini-
tions in section 8 when comparing the different relaxations.

14



Chapter 6

Generalization to higher order
clique potentials

We generalize some results for the most general case of MRF with higher order clique
potentials. We can write the MAP problem as the following integer program with poly-
nomial cost function:

max
x∈Ωd

ε(x) (6.0.1)

ε(x) = 〈θ, φ(x)〉 =
∑
α∈I

θαφα(x) (6.0.2)

(6.0.3)

where φα(x) is a monomial of degree deg(φα(x)) that involves at most one term xia per
vertex i: we write α = α1...αm if φα(x) = xα1 ...xαm and m = deg(φα(x)). The marginal
polytope extends its definition in a straightforward manner:

MARG(G) = {µ ∈ Rd : ∃θ ∈ Rd : µ = Eθ[φ(x)]} (6.0.4)

with d = |I|. We also define Mindep(G) as the subset of MARG(G) corresponding to
independent variables:

Mindep(G) = {µ ∈ Rd
+ :
∑
a

µia = 1, µα1...αm = µα1 ...µαm} (6.0.5)

We verify indeed that Mindep(G) ⊂ MARG(G) as follows: take θia = µia and θia,jb = 0,
so that the random variables are independant. Then it is easy to see that Eθ[xα1 ...xαm ] =
µα1 ...µαm . By definition, we also have Mindep(G) = φ(Ωs).

6.1 Polynomial formulation

We relax (6.0.1) as follows and prove a generalization of proposition 4.2.1.

max
x∈Ωs

ε(x) (6.1.1)
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Proposition 6.1.1 ((6.0.1) and (6.1.1) are equivalent). maxx∈Ωd ε(x) = maxx∈Ωs ε(x)
and given a point x ∈ Ωs we can efficiently construct xd ∈ Ωd with ε(x) ≤ ε(xd).

Proof.
max
x∈Ωd

ε(x) = max
x∈Ωd
〈θ, φ(x)〉 = max

µ∈MARG(G)
〈θ, µ〉 (6.1.2)

since MARG(G) can be seen as the convex hull of φ(Ωd) and a linear program is maxi-
mized at a vertex. Also,

max
x∈Ωs

ε(x) = max
µ∈Mindep(G)

〈θ, µ〉 = max
µ∈MARG(G)

〈θ, µ〉 (6.1.3)

since φ(Ωd) ⊂ Mindep(G) ⊂ MARG(G). Finally, maxx∈Ωd ε(x) = maxx∈Ωs ε(x). Now
suppose we are given x ∈ Ωs. We follow a rounding scheme similar to Iterative Conditional
Modes: let i ∈ V and partition x as x = (xi, y) with xi = (xia). xi → ε(xi, y) is a linear
function of xi, and is maximized at some extremal point. We assign that value to xi
and proceed with the other vertices until we obtain some xd ∈ Ωd. By construction,
ε(xd) ≥ ε(x)

6.2 Generalization of optimality bounds

We show the following proposition generalizing the results of section 4.4.2:

Proposition 6.2.1 ( 1
kp−1 bound for nonnegative MRFs with size p cliques and k labels).

When the coefficients θ are nonnegative ( i.e.ε(x) is a posynomial), we can efficiently
compute a feasible point xd ∈ Ωd such that ε(xd) ≥ 1

kp−1 maxΩd ε, with k the maximum
number of labels per node and p the maximal clique size.

Proof. We assume here that θ is nonnegative (i.e.ε(x) is a posynomial). We relax the
linear constraints as

∑
xpia = 1 where p = maxα deg(φα(x)) so that x lies on a product

of `p spheres (denoted Ωp). The resulting program is still concave (up to a change of
variables x→ xp) and can be solved efficiently. As shown in [7], when ε(x) is irreducible
(a generalization of irreducibility for a matrix), there is a unique solution which is also
the unique critical point of ε(x) on Ωp, but we do not need unicity for the bound.

Let x∗ = arg maxΩp ε be such a point (not necessarily unique) and xs = pΩs [x∗], using
the projection defined earlier. We have

∑
a x
∗
ia ≤ k1−1/p (since

∑
a x
∗3
ia = 1) and for each

monomial φα1...αm(x) we have

φα1...αm(xs) = xs,α1 ...xs,α1 ≥
x∗α1

k1−1/p
...

x∗αm
k1−1/p

=
φα1...αm(x∗)
(k1−1/p)m

(6.2.1)

Since we assumed the coefficients are nonnegative and m ≤ p, we obtain: ε(xs) ≥
ε(x∗) 1

(k1−1/p)p
= 1

kp−1 . Finally, using proposition 6.1.1 we can efficiently compute xd ∈ Ωd

such that ε(xd) ≥ ε(xs) ≥ 1
kp−1 maxΩd ε
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Chapter 7

Tree Relaxation, Message Passing
and Lagrangian Duality

7.1 Upper bounds via convex combinations of trees

One key property of φ∞(θ) is its convexity (as a maximum of linear functions). Let (θi)
be a collection of exponential parameters and (ρi) be a collection of non-negative weights
with

∑
i ρ
iθi = θ. By Jensen’s inequality we have the following upper bound:

φ∞(θ) ≤
∑
i

ρiφ∞(θi) (7.1.1)

This bound is only useful when the parameters θi lead to tractable computations. We
seek here the best (i.e.smallest) possible upper bound involving convex combinations of
tree-structured exponential parameters, for which we can compute each MAP easily using
dynamic programming.

We now introduce some notation to make this precise. Let T be a spanning tree
defined over G with edges E(T ); we define I(T ) as the indices corresponding to the tree
T and E(T ) as the set of tree-structured MRF.

I(T ) = {ia} ∪ {(iai, jb) : (i, j) ∈ E(T )} (7.1.2)
E(T ) = {θ(T ) ∈ Rd : θα = 0 ∀α ∈ I\I(T )} (7.1.3)

Let T be a set of spanning trees such that E = ∪T∈T E(T ) and ρ be a positive
probability distribution over T . We define the edge appearance probability as ρe =
Prρ[e ∈ T ] > 0 and the set of ρ− reparameterizations as:

Aρ(θ) = {(θ(T ))T∈T : θ(T ) ∈ E(T ), Eρ[θ(T )] =
∑
T∈T

ρ(T )θ(T ) = θ} (7.1.4)

Since ∀e ∈ Eρe > 0 (by construction), we have Aρ(θ) 6= ∅.
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7.2 Tightness of the upper-bound

It follows from (7.1.1) that for (θ(T )) ∈ Aρ(θ),

φ∞(θ) ≤
∑

ρ(T )φ∞(θ(T )) (7.2.1)

We are interested in the cases where the upper bound is tight. Define the collection of
optimal configurations as:

OPT (θ) = arg max
x∈Ωd
〈θ, φ(x)〉 (7.2.2)

The following proposition shows that when the so-called tree agreement condition holds,
we can solve the original MAP problem by looking at configurations which are optimal
for every tree T ∈ T .

Proposition 7.2.1 (Tree agreement). For (θ(T )) ∈ Aρ(θ), we have:

∩TOPT (θ(T )) ⊂ OPT (θ) (7.2.3)

with equality and the bound (7.2.1) is tight iff the LHS is non-empty (in which case there
is also equality in (7.2.3)).

Proof. (7.2.3) follows from (7.2.1). Let x∗ ∈ OPT (θ). We can rewrite (7.2.1) as:

0 ≤
∑

ρ(T )φ∞(θ(T ))− φ∞(θ) =
∑

ρ(T )[φ∞(θ(T ))− 〈θ(T ), φ(x∗)〉]

with equality only when 〈θ(T ), φ(x∗)〉 = φ∞(θ(T ))∀T ∈ T

We present two possible approches to minimizing the upper bound (7.2.1). The first
one is based on direct minimization of (7.2.1) using Lagrangian duality leading to an
LP. The second one is based on message-passing algorithms that seek to find a ρ −
reparameterization for which tree-agreement holds. The fixed-points of those algorithms
correspond to optimal solutions of the LP when the bound is tight.

7.3 Lagrangian duality, tree relaxation and linear program-
ming

We prove in this section the following fundamental results:

φ∞(θ) ≤ min
(θ(T ))∈Aρ(θ)

Eρ[φ∞(θ(T ))] (7.3.1)

φ∞(θ) = max
µ∈MARG(G)

〈θ, µ〉 (7.3.2)

min
(θ(T ))∈Aρ(θ)

Eρ[φ∞(θ(T ))] = max
µ∈LOCAL(G)

〈θ, µ〉 (7.3.3)

Here are a few important observations:

• (7.3.3) expresses the Lagrangian dual of the upper bound as an LP
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• (7.3.3) shows that the particular choice of the tree collection T and distribution ρ
does not affect the upper bound (as long as the edge appearance probabilities are
all positive)

• even though (7.3.2) also expresses the MAP as an LP, the number of constraints for
MARG(G) make it intractable in general

• for trees, we have equality in (7.3.1) because MARG(G)=LOCAL(G), but there are
non-tree cases where equality holds as well

7.3.1 LP for the exact MAP

We give here a simpler proof of (7.3.2): maxx∈Ωd〈θ, x〉 = maxµ∈MARG(G)〈θ, µ〉 because
MARG(G) is the convex hull of Ωd and an LP is maximized at a vertex.

7.3.2 LP for the upper bound

We prove the main result (7.3.3) expressing the Lagrangian dual of the upper bound
as an LP. Let τ be the vector of Lagrange multipliers associated with the constraint
Eρ[θ(T )] = θ. The Lagrangian of the LHS of (7.3.3) is:

Lρ,θ((θ(T )), τ) = Eρ[φ∞(θ(T ))] + 〈τ, θ − Eρ[θ(T )]〉 (7.3.4)
= Eρ[φ∞(θ(T ))− 〈θ(T ), τ〉] + 〈τ, θ〉 (7.3.5)

The dual function is:

inf
θ(T )∈E(T )

Lρ,θ((θ(T )), τ) = 〈τ, θ〉+ Eρ[ inf
θ(T )∈E(T )

φ∞(θ(T ))− 〈θ(T ), τ〉] (7.3.6)

Now, for a tree T we have

φ∞(θ(T )) = max
τ∈LOCAL(G)

〈θ(T ), τ〉 = max
τ∈LOCAL(G,T )

〈θ(T ), τ〉 (7.3.7)

where

LOCAL(G,T ) = {µ ∈ Rd
+ :
∑
a

µia = 1,
∑
a

µia,jb = µjb,
∑
i

µuv,ij = µvj∀(u, v) ∈ E(T )}

(7.3.8)
Therefore the conjugate dual is the indicator function of LOCAL(G,T):

sup
θ(T )∈E(T )

〈θ(T ), τ〉 − φ∞(θ(T )) =

{
0 if τ ∈ LOCAL(G,T ),
+∞ else

(7.3.9)

Finally, we have

inf
θ(T )∈E(T )

Lρ,θ((θ(T )), τ) =

{
〈τ, θ〉 if τ ∈ ∩TLOCAL(G,T ),
−∞ else

(7.3.10)

we can express the dual maximization problem using the fact ∩TLOCAL(G,T ) = LOCAL(G):

max
τ

inf
θ(T )∈E(T )

Lρ,θ((θ(T )), τ) = max
τ∈LOCAL(G)

〈θ, τ〉 (7.3.11)

by strong duality, we obtain (7.3.3)
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7.4 Tree-reewighted message passing algorithms

Solving the LP for the upper bound is certainly feasible using off-the-shelf solvers, but
can be expensive for large graphs. In this section we explore iterative message-passing
algorithms that exploit the garphical structure of the problem. The fixed-points of those
algorithms correspond to optimal dual solutions of the LP (when the relaxation is tight).
For trees, these algorithms reduce to the ordinary max-product algorithm, and are oth-
erwise different.

We define max-marginals ν for tree-structured distributions θ(T ) as follows1:

νia = max
x:xia=1

〈θ(T ), x〉 (7.4.1)

νia,jb = max
x:xia=1,xjb=1

〈θ(T ), x〉 (7.4.2)

Using the junction tree decompositionone can show that a tree-structured distributions
can be factored in terms of max-marginals as follows:

〈θ(T ), x〉 =
∑

νiaxia +
∑

(νia,jb − νia − νjb)xiaxjb (7.4.3)

this is also the factorization produced by max-product algorithm (in log-space). In turn,
we define a function θ(T ) = fT (ν) as follows: θ(T )ia = νia and θ(T )ia,jb = νia,jb−νia−νjb
if (i, j) ∈ E(T ) and θ(T )ia,jb = 0 otherwise. One can check whether a vector ν corresponds
to valid max-marginals using local operations as follows:

Proposition 7.4.1. A vector ν corresponds (up to an additive constant) to valid max-
marginals for a tree T iff ∀(i, j) ∈ E(T ), νia = maxb νia,jb + constant where the additive
constant is independant of a.

Given the max-marginal factorization one can compute the MAP solution using the
following local optimality conditions:

Proposition 7.4.2 (Local optimality). Let ν be a vector of valid max-marginals for a
distribution represented by θ(T ). Then x∗ ∈ OPT (θ(T )) iff:

x∗ia = 1 =⇒ a ∈ arg max
a′

νia′ ∀i (7.4.4)

x∗ia = 1, x∗jb = 1 =⇒ (a, b) ∈ arg max
a′b′

νia′,jb′ ∀(i, j) ∈ E (7.4.5)

(7.4.6)

For graphs with cycles, the computation of max-marginals is intractable in general. We
present here iterative algorithms that update a vector of so-called pseudo-max-marginals
ν that approximate the real max-marginals so that:

1. ∀T, (θ(T )) = (fT (ν)) is a ρ− reparameterization of the orginial distribution θ

2. tree consistency: ∀T, ν are valid max-marginals for fT (ν) (cf proposition 7.4.1).

The algorithms presented satisfy condition 1. at every iteration, and condition 2. upon
convergence to a fixed-point.

1Our definition differs from [5] in that we use max-marginals in log-space, for consistency of notation
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7.4.1 Direct updating of pseudo-max-marginals

Input: exponential parameters θ

1. Initialize the pseudo-max-marginals:

ν0
ia = θia (7.4.7)

ν0
ia,jb =

1
ρij
θia,jb + θia + θjb (7.4.8)

2. for t = 0...+∞ until convergence:

δi→j,b = max
a

νtia,jb (7.4.9)

νt+1
ia = νtia +

∑
j∈N(i)

ρij(δj→i,a − νtia) (7.4.10)

νt+1
ia,jb = (νtia,jb − δi→j,b − δj→i,a) + νt+1

ia + νt+1
jb (7.4.11)

Algorithm 1: Edge-based reparameterization updates

We show here that condition 1 is satisfied after each iteration. After initialization
step, let θ(T )0 = fT (ν0):∑

T

ρ(T )θ(T )0
ia =

∑
T

ρ(T )θia = θia (7.4.12)

∑
T

ρ(T )θ(T )0
ia,jb =

∑
T :(i,j)∈E(T )

ρ(T )
1
ρij
θia,jb = θia,jb (7.4.13)

For the induction step we have, with θ(T )t+1 = fT (νt+1) just after an update:∑
T

ρ(T )〈θ(T )t+1, x〉 =
∑
ia

(νtia +
∑

j∈N(v)

ρij(δj→i,a − νtia))xia (7.4.14)

+
∑

ia,jb:(i,j)∈E

ρij(νtia,jb − δi→j,b − δj→i,a)xiaxjb (7.4.15)

=
∑
ia

νtiaxia +
∑
ia,jb

ρij(νtia,jb − νtia − νtjb)xiaxjb (7.4.16)

We used the fact that
∑

ia

∑
j∈N(i) ρij(δj→i,a− νtia)xia =

∑
iajb:(i,j)∈E ρij(δi→j,b + δj→i,a−

νtia− νtjb))xiaxjb since xia =
∑

j xiaxjb and using both directions for each edge. Note also
that this is valid for any expression of δi→j,b (interpretable as a message). Finally, using
the induction hypothesis we obtain∑

T

ρ(T )〈θ(T )t+1, x〉 =
∑
T

ρ(T )〈θ(T )t, x〉 = 〈θ, x〉 (7.4.17)

We now show that condition 2 is satisfied at a fixed point ν = νt = νt+1:

δi→j,b − νjb = −(δj→i,a − νia) (7.4.18)

therefore νia = maxb νia,jb + constant

21



Chapter 8

Comparison of convex relaxations

8.1 Optimality cases

In general, optimality conditions depend both on the topology of the graph and the
numerical values on the potentials. The LP −LOCAL(G) relaxation is tight in following
important cases:

1. G is a tree

2. ε(x) is supermodular and k = 2, i.e.Wi0,j0 +Wi1,j1 ≥Wi0,j1 +Wi1,j0

The first case forms the basis of TRW and dual decomposition for MRF. The second
case forms the basis for graphcuts[2] and its multilabel extensions to α expansion moves
and α − β swaps [24]. We also note there are exact algorithms for graphs with bounded
tree-width (junction tree decomposition) and graphs containing a single loop and binary
variables[17]. There are no such guarantees for L2QP , CQP , spectralrelaxation.

8.2 Relative dominance relationships

In order to compare relaxations we introduce the following notions. We say that relaxation
A domintes relaxation B if for all problem instances, ε∗A ≤ ε∗B where ε∗A denotes the
optimum of relaxation A (implicitly depending on the problem instance). A strictly
domintes B if A domintes B but B does not dominate A. A and B are equivalent if A
domintes B B domintes A.

We have the following hierarchy of feasible sets:

φ(Ωd) ⊂Mindep(G) ⊂MARG(G) ⊂ SDP (G)∩AFFINE(G) ⊂ SOCP (G)∩AFFINE(G)
(8.2.1)

where AFFINE(G) is, again, any subset of affine constraints from the marginal polytope
MARG(G), for example LOCAL(G), but we have seen that we can add other ones, such
as triangular inequalities. In general all the inclusions are strict, but when G is a tree we
have MARG(G) = LOCAL(G). It follows that:

ε∗IQP = ε∗QP = ε∗MARG(G) ≤ ε
∗
SDP (G)∩AFFINE(G) ≤ ε

∗
SOCP (G)∩AFFINE(G) ≤ ε

∗
AFFINE(G)

(8.2.2)
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using optimizers on the respective sets; notably the last one being the Linear Program-
ming relaxation on AFFINE(G) (LP − AFFINE(G)). The two equalities come from
proposition 4.2.1 and section 5.1. In general all the inequalities are strict, but obviously
not when the LP relaxation is tight, see section 8.1.

A very interesting recent result from [25] shows that CQP is equivalent to SOCP −
LOCAL1(G), which is the SOCP relaxation with AFFINE(G) = LOCAL1(G) as the
affine constraint set (from section 5.5).

Proposition 8.2.1 (CQP is equivalent to SOCP with LOCAL1(G)). ∀x ∈ Ωs, εCQP (x) =
maxX:(x,X)∈SOCP (G)∩LOCAL1(G) ε(x,X). In particular, ε∗CQP = ε∗SOCP (G)∩LOCAL1(G).

We provide a more concise proof here: given x ∈ Ωs, the cost function ε(x,X) is linear
in Xα,β (with coefficient Wα,β) and there is a single box constraint for Xα,β given by
(5.4.8). At the optimum we therefore have:

Xα,β = xαxβ + sign[Wα,β]
1
2

(xα − x2
α + xβ − x2

β) (8.2.3)

Linearly combining those equations we obtain:∑
α,β

Wα,βXα,β =
∑
α,β

Wα,βxαxβ +
∑
α,β

|Wα,β|(xα − x2
α) (8.2.4)

and adding the linear term
∑

α Vαxα to both sides we finally obtain:

ε(x,X) = εCQP (x) (using (4.3.1)) (8.2.5)

The conclusion follows taking x∗ = arg maxΩs εCQP .
A second interesting result from [25] shows that SOCP − LOCAL1(G) is strictly

dominated by LP − LOCAL2(G), and that the SOCP constraint (5.4.8) is implied by
LOCAL2(G).

Proposition 8.2.2 (LP−LOCAL2(G) strictly dominates SOCP−LOCAL1(G)). LP−
LOCAL2(G) strictly dominates SOCP−LOCAL1(G), and in fact LOCAL2(G) ⊂ SOCP (G).

In turn, this shows that LP − LOCAL2(G) strictly dominates CQP as well. For the
proof, we first show, using the marginalization constraint that for (x,X) ∈ LOCAL2(G),

|xα − xβ| ≤ xα + xβ − 2Xα,β (8.2.6)

Next, the marginalization and positivity constraint also implies that:

xα + xβ ≤ Xα,β + 1 ≤ 2Xα,β + 1 (8.2.7)

Combining (8.2.6) and (8.2.8) we obtain:

2Xα,β − 2xαxβ ≤ (xα − x2
α + xβ − x2

β) (8.2.8)

We prove the lower bound similarly, and finally obtain (5.4.8). Furthermore, one can
construct an MRF for which the optimizers of SOCP − LOCAL1(G) are outside of
LOCAL2(G)
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8.3 Additive bounds on the quality of the approximation

In [25] the authors prove that we have the same additive bound for LP − LOCAL2(G)
as for CQP, and propose an example to suggest that the bound is tight. However their
example seems bogus (see their figure 1): since the graph has two nodes, it is a tree, so
there is an integral solution to the LP (which is also the discrete optimal). The rounding
scheme would not change that solution.

We suggest a slight modification of CQP to tighten their additive bound of 1
4 ||W ||1 =

1
4

∑
ij |Wi0,j0|+ |Wi0,j1|+ |Wi1,j0|+ |Wi1,j1| in the case k = 2. The new bound we obtain

is:
1
4

∑
ij

|Wi0,j0 +Wi1,j1 −Wi0,j1 −Wi1,j0| (8.3.1)

which we can interpret as the `1 deviation from modularity (recall that W represents
a modular energy function if ∀(i, j),Wi0,j0 + Wi1,j1 = Wi0,j1 + Wi1,j0). This bound is
obviously tighter in general and has the significant advantage of being independant of
reparameterizations, as one can show. Since the LP is invariant to reparameterizations,
this new bound also applies to the LP relaxation. To prove this, we first reorder the
indexes so as to decompose x, W , V as follows:

W =
[
W00 W01

W10 W11

]
, V =

[
V0

V1

]
, x =

[
x0

1− x0

]
(8.3.2)

We then rewrite the cost function using simple algebraic manipulations as:

xTWx+ V Tx = x0
T(W00 +W11 −W01 −W10)x0 + x0

T(W011 +W01
T1− 2W111) + 1TW111

(8.3.3)

Note, this is a simple matrix view of the transformation given in [2]. We can in fact
interpret it as a reparameterization. Now we can apply the CQP algorithm to the new
resulting quadratic program, and the bound (8.3.1) follows. We can see that this bound
is invariant to reparameterizations, as the bound also applies to the reduced upper-left
quadrant matrix following from this construction.

8.4 Multiplicative bounds

We assume in this section that W,V are nonnegative, otherwise there is no hope for a
multiplicative bound (for example when the MAP is the only discrete solution with a
positive outcome). We have seen that L2QP provides a 1

k multiplicative bound, which is
interesting since it does not depend on the parameters W,V , and we have generalized it to
arbitrary clique size, giving a 1

kp−1 bound for cliques of size p. We have also shown in [10]
that spectral relaxation provides a 1

k approximation guarantee whenever the maximizer
of the relaxation is nonnegative (which is typically the case in our experiments).

Data-dependant multiplicative bounds have also been proposed for L2QP and spectral
relaxation, as a function of the peakiness of the MAP. We proved in [10] that the bounds
are in fact the same for L2QP and spectral relaxation (modulo the same caveat regard-
ing nonnegativity of the maximizer for spectral relaxation). In particular, the bound
converges to 1 as the distribution becomes more uniform.
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There seems to be no multiplicative bound reported for the LP relaxation. We have
numerically found examples with k = 2 for which the bound was approaching 1

2 and we
can probably prove that ∀η > 0, we can find an example for which the rounding scheme is
less than 1

2 − η times the discrete optimum, implying that if there is such a multiplicative
bound, it is 1

k for k = 2 (those examples converge to a matrix for which the LP has an
integral solution, but there are arbitrarily close examples for which the LP is fractional).
We also found (rare) numerical examples with k ≥ 3 for which the bound was > 2. We
conjecture that the same multiplicative bound of 1

k holds for LP.
One can prove certain multiplicative bounds for the LP for special cases, such as Potts

model or truncated linear pairwise potentials.

8.5 Ability to handle arbitrary clique size

Any of the lift-and-project relaxations (LP, SDP, SOCP) can naturally encode arbitrary
clique sizes, with an increase in number of variables and computation time. In general,
each clique of size p with k labels per node will require kp marginals, one per joint
assignment in that clique. The extension we proposed for the L2QP relaxation in section
provides a much more compact representation, still using only n · k variables. The cost
function is a polynomial (in fact posynomial) of degree p, and the relaxation can be shown
equivalent to a geometric program (we can relax the `p sphere equality constraints to
inequality constraints without changing the problem) and we have shown a multiplicative
bound of 1

kp−1 in that case.

8.6 Invariance to reparameterization

One important aspect for a relaxation is the ability to produce the same answer regardless
of the particular reparameterization of the cost function. We can see that CQP is not
invariant, since the initial choice of D obviously depends on reparameterizations. We sug-
gested a simple modification in section 8.3 to make CQP invariant in the case k = 2. L2QP
is also not invariant to reparameterizations; in particular we need a reparameterization
which makes the quadratic and linear part nonnegative (so as to obtain a posynomial).

One can show that the LP and SDP relaxations are invariant (indeed the dual variables
correspond to reparameterizations).

8.7 Space/time complexity and convergence guarantees.

8.7.1 Space complexity

The relaxations we presented in section 4 do not change the number of variables of the
original IQP formulation: they have |V |k variables and same order of number of con-
straints. The LP and SOCP relaxations can both take advantage of the sparsity of the
graph, and have |V |k + |E|k2 variables and same order of number of constraints (more
generally, with higher order terms we would have mkp variables for a graph with m cliques
of order p). Note that those relaxations can be tightened at the expense of increasing the

25



number of constraints, for example by considering triangular inequalities as explained in
section 5.5. The SDP formulation squares the number of variables (|V |k)2) as the SDP
constraint is global and cannot take advantage of sparsity of the graph structure. In all
those cases (except for the SDP formulation), the memory complexity is dominated by the
problem instance (one needs to store the node and edge potentials). When the problem
is structured however (potts model, truncated linear pairwise potentials, etc.), as is often
the case for large-scale problems, the variables corresponding to marginals become the
memory bottleneck, and the k2 factor can become an issue.

8.7.2 Time complexity

Time complexity is an important consideration when deciding which algorithm to use, and
there is a large body of research on designing specialized algorithms to improve complexity
for particular cases, a discussion of which is beyond the scope of this report. Notable
examples include dynamic graph cuts[26], improvements over α− expansion moves [27],
linear-time generalized max-transform [28] to eliminate the k2 factor in belief propagation
updates, etc. Message passing algorithms [5, 29, 22] have also been widely used in practice
to speed-up the LP relaxation. They can scale to large-scale problems and also avoid the
k2 memory factor observed in marginals.

There are also effective solvers for L2QP (using the fixed-point updates), CQP (SMO
or conjugate gradient descent), and spectral relaxation (Lanczos method for eigenvalue
computation) which allow to tackle large-scale problems. On the other hand, LP and
SOCP scale to mid-size problems while SDP scales to smaller sized problems with a
thousand variables.

8.7.3 Convergence guarantees

One of the main drawbacks of message passing algorithms such as TRW is the lack
of general guarantees regarding convergence. TRW does not necessarily decrease the
upper-bound at each iteration, and even worse, it may not converge at all. A sequential
TRW variant (TRW-S) has been proposed in [29], with better convergence properties. In
particular there is monotonic convergence to a local minimum satisfying the so-called weak
tree agreement condition, less restrictive than the original tree agreement condition of [5].
Very recently, a dual decomposition technique has been applied to the MAP problem,
where the problem is decomposed over a set of spanning trees. The resulting algorithm
is a subgradient descent in the dual formulation, and the updates can be interpreted as
a new message passing scheme. They have the attractive property of corresponding to
a subgradient descent in the dual, and therefore come with much stronger convergence
guarantees.
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Chapter 9

Synthesis and Conclusion

9.1 Summary

We have shown how the MRF-MAP estimation problem, equivalent to an IQP, can be
relaxed to an equivalent real-valued QP. The caveat is that the resulting QP is always
non-convex except for the trivial case of an interaction-free MRF. We have presented a
number of convex relaxations for the QP and showed they can be reformulated so as to
fall in one of those two categories:

• (1) QP relaxations, involving a convex upper bound on the objective ε(x)

• (2) lift-and-project relaxations, involving a linearization of the objective and a con-
vex upper bound on the domain X = xxT, x ∈ Ωs

The lift-and-project operation transforms the non-convex objective into a linear (convex)
one, while mapping the convex domain Ωs to a non-convex one φ(Ωs) = Mindep(G).
The different relaxations are summarized in table 9.1. The hierarchy of feasible sets is
reproduced below:

φ(Ωd) ⊂Mindep(G) ⊂MARG(G) ⊂ SDP (G)∩AFFINE(G) ⊂ SOCP (G)∩AFFINE(G)
(9.1.1)

where AFFINE(G) is a set of local affine constraints, defined for example on nodes
(LOCAL1(G)), edges (LOCAL2(G)) or triangles (LOCAL3(G)), at the extreme on the
entire graph (LOCAL∞(G) = MARG(G)). This yields the following dominance relations:

ε∗IQP = ε∗QP = ε∗MARG(G) ≤ ε
∗
SDP (G)∩AFFINE(G) ≤ ε

∗
SOCP (G)∩AFFINE(G) ≤ ε

∗
AFFINE(G)

(9.1.2)
There are a few notable, if not surprising results coming from our analysis:

• (1) ε∗IQP = ε∗QP , i.e.the discrete constraint is redundant

• (2) ε∗QP = ε∗MARG(G), i.e.the rank-1 constraint X = xxT can be approximated by a
finite (but very large) set of affine constraints
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QP relax. convex upper bound on the COST ε(x)
L2QP ε(x) ≤ ε(

√
(x))

spectral ε(x) ≤ ε(x)/(xTx/n)
CQP ε(x) ≤ ε(x) +

∑
α(xα − x2

α)
lift&project linearize and convex upper bound on DOMAIN X = xxT, x ∈ Ωs

SDP X = xxT approximated as X � xxT + affine constraints
SOCP X � xxT approximated as X • UUT ≥ ||UTx||2 + affine constraints

LP local marginal constraint
∑

aXia,jb = xjb and x ∈ Ωs

TRW attempts to solve the dual of LP

Table 9.1: Summary of the convex relaxations presented in this report, which we classified
in two categories: QP relaxations, and lift-and-project relaxations.

# variables # constraints add. bound mult. bound higher order?
QP relax.

L2QP |V |k |V | 1
k yes

spectral |V |k |V | 1
k (if x ≥ 0) no

CQP |V |k |V |k 1
4 ||W ||1 no

lift&project
LP |V |k + |E|k2 |V |k + |E|k2 1

4 ||W ||1 ≤ 1
k for k = 2 yes

SOCP |V |k + |E|k2 |V |k + |E|k2 1
4 ||W ||1 yes

SDP (|V |k)2 (|V |k)2 yes

Table 9.2: Comparison of convex relaxations presented in this report. For each relaxation,
we report the number of variables it uses as a function of the number of vertices |V |,
edges |E| and labels k, as well as the number of constraints, and potential additive or
multiplicative bounds we can prove. We also report whether the relaxation naturally
extends to higher order cliques.

• (3) LOCAL(G) = MARG(G) when G is a tree, and there are non-tree cases where
ε∗LOCAL(G) = ε∗MARG(G) (implying tree agreement condition)

• (4) LOCAL(G) ⊂ SOCP (G), i.e.the local SOCP constraints are implied by the
local marginalization constraints despite the flexibility of the SOCP constraints

• (5) CQP is equivalent to SOCP−LOCAL1(G), in the sense that maximizing ε(x,X)
over X obeying the SOCP constraints yields εCQP (x)

• (6) the Lagrangian dual of the tree relaxation upper bound coincides with the LP
relaxation on LOCAL(G).

We have shown certain additive and multiplicative bounds for the different relaxations,
see table 9.2. We also summarize the pros and cons of each relaxation in table 9.3. There
are again a few surprising points:
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pros cons
QP relax. # variables, efficient solvers performs poorly for larger k

L2QP generalizes to p− ary cliques requires W,V ≥ 0 (can affect bounds)
spectral generalizable to tighten bounds bounds only hold when x ≥ 0

CQP simple to implement reduces to an SOCP
lift&project generalizes to p− ary cliques # variables increases

SDP very good approximation inefficient, small-scale problems
SOCP faster and sparser than SDP most constraints implied by LP !

LP optimal for trees, submodular, etc. scales to mid-sized problems
TRW very scalable weak convergence guarantees

Table 9.3: Sampled pros and cons of each relaxation.

• (1) all additive bounds are the same despite strict dominance relationship between
LP − LOCAL2(G) and SOCP − LOCAL1(G).

• (2) the multiplicative bounds for spectral relaxation and L2QP are the same, and
so are the data-dependant multiplicative bounds

9.2 Open questions

There is currently no dominance relation between L2QP , spectral relaxation and LP , but
there are specific instances for which LP is optimal and not the other 2. It is unknown
whether the same multiplicative bound applies for LP but we can probably show it cannot
be better than 1

k for k = 2. The LP relaxation tends to give completely uniform fractional
solutions for hard instances, which is not very informative. Is there an advantage in using
one of the QP formulations in that case?

Another question relates to the generality of the techniques presented here. To what
extent are they applicable to other problems such as QAP (Quadratic Assignment Prob-
lem) or other combinatorial problems? Is there a more general principle behind the
different relaxations presented here that can potentially lead to tighter relaxations? We
are currently investigating this with a novel formulation in terms of Lagrangian dual for
a set of redundant quadratic constraints (such as x2

α = xα among other ones); we have
shown in particular that this formulation reduces to most of the relaxations presented
here (CQP, L2QP, spectral relaxation, SDP, LP), depending on the choice of redundant
quadratic constraint that is used. We have also characterized a basis for the set of redun-
dant quadratic equality constraints and determined its dimension for the MRF and QAP
problems as a quotient space.

A more general question concerns whether or not the MRF formulation is the right
model for the typical applications in computer vision and machine learning. For example
in stereo reconstruction there is some evidence that the ground truth labeling often has
a worse energy than the optimum for disparity estimation. This leads to the problem
of designing the right cost functions for a specific task and may involve regularization,
normalization[30] and/or learning[19],
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