
Learning spectral graph segmentation

Timothée Cour
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

Nicolas Gogin
Computer Science

Ecole Polytechnique
91128 Palaiseau Cedex, FRANCE

Jianbo Shi
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

Abstract

We present a general graph learning algo-
rithm for spectral graph partitioning, that
allows direct supervised learning of graph
structures using hand labeled training exam-
ples. The learning algorithm is based on
gradient descent in the space of all feasible
graph weights. Computation of the gradient
involves finding the derivatives of eigenvec-
tors with respect to the graph weight matrix.
We show the derivatives of eigenvectors exist
and can be computed in an exact analytical
form using the theory of implicit functions.
Furthermore, we show for a simple case, the
gradient converges exponentially fast. In the
image segmentation domain, we demonstrate
how to encode top-down high level object
prior in a bottom-up shape detection process.

1 INTRODUCTION

Image segmentation and data clustering are two fun-
damental operations in computer vision and machine
learning. Let I = {x1, ...,xn} be a set of feature vec-
tors representing n image pixels or data points. The
image segmentation process partitions pixels into K
disjoint groups. In a 2-way segmentation, we seek an
output vector SEG(I) = {y1, ..., yn} ∈ {0, 1}n, such
that a segmentation goodness measure is optimized.
We defined segmentation as a mapping from xi to
yi ∈ {0, 1} to purposely hint its potential connection
to a supervised learning method we should propose.
Our goal is to teach the image segmentation through a
set of hand labeled training examples. Given a set of
image/segmentation pairs {Ii, SEG∗(Ii)}, the system
will learn to adjust so that the computed segmenta-
tion SEG(Ii) is close to SEG∗(Ii). With a supervised
image segmentation, we are able to encode top-down
object familiarity prior in a bottom-up distributed pro-

cess. In this paper, we will demonstrate a system that
can detect and segment rectangular shaped objects in
a clutter image background by learning from examples.

To appreciate why learning image segmentation is dif-
ficult, we summarize below its basic principles. Seg-
mentation algorithms are defined by the clustering cri-
teria and computational process to optimize it. For
example, in the Markov Random Field (MRF) for-
mulation, the criteria is to maximize P (SEG(x)|x) =
1
Z

exp(
∑−f(yi, yj |x)), where f(yi, yj |x), called clique

potential, specifies a local measure of grouping pixel
i with j. While each f(yi, yj |x) can be easily cor-
rupted, the global optimum of P (SEG(x)|x) must bal-
ance preferences on all pairs of f(yi, yj |x) and there-
fore is stable. Spectral graph partitioning, such as
Normalized Cut (Ncut)[6][5], has been developed as a
computationally efficient alternative to MRF. Image
segmentation is mapped to a graph partitioning prob-
lem, where the graph consists of the pixels/data points
as nodes, and the weighted graph edges W (i, j) serve
as the equivalent of Clique Potential f(yi, yj |x). The
global segmentation criterion Ncut seeks a balanced
segmentation and grouping of the pixels. Computa-
tionally the solution is derived from the eigenvectors
of Wy = λDy, where D is the degree matrix. As in
the MRF case, the eigenvectors are implicitly related
to the input weight matrix W , and are quite insensitive
to random perturbation of W .

While global decision process from local feature com-
parison brings a stable segmentation, it makes the
learning segmentation a difficult task. Treating any
segmentation learning algorithm as a black box, one
must be able to back-trace error on the output of
global segmentation to the input local clique potential
or pair-wise weight matrix. Since the global decision
is only implicitly related to the input, it is hard to ex-
plicitly assign a blame to a particular clique potential
or weight matrix entry. To account for segmentation
error on just one pixel, we would potentially need to
adjust all possible pairs of clique potential or weight

Model

Image

Hand Segmentation

Ncut

P*[I]

Model

Image

Hand Segmentation

Ncut

(A) (B)

Figure 1: Two alternative algorithms for learning spectral graph partitioning. (A) methods of Meila-Shi[4]
optimizes the graph weight W (I,Θ) by minimizing the KL-divergence between an equivalent random walk matrix
P (I,Θ) and the target P ∗(I,Θ). (B) Our method directly optimize the error on the output Ncut segmentation
vector XNcut[W (I,Θ)] by gradient descent in the space of all feasible graph weights using explicit computation
of the derivatives of eigenvectors.

matrix entries!

Meila-Shi[4] first studied the problem of learning spec-
tral graph cuts with supervised training data. Their
proposed algorithm learned the graph weight Wij by
minimizing the KL-divergence between an equivalent
random walk matrix Pij and the target P ∗

ij derived
from the hand labeled segmentation. However the for-
mulation provides no explicit constraints on the Ncut
eigenvector itself. Bach-Jordan[1] formulated a direct
optimization of W with respect to its Ncut eigenvec-
tor. They transform the implicit relationship between
W and Ncut eigenvector into an explicit one by mak-
ing a differentiable approximation of eigenvector using
power method. The resulting computation of deriva-
tives of eigenvector is however complex and can be
computationally unstable.

We present in this paper a direct method for learn-
ing spectral graph cut, based on efficient computation
of derivatives of Ncut eigenvectors in exact analytical
form. We show that there is an explicit computation
that assigns the segmentation error to the input graph
weight matrix. This capability allows us to design pa-
rameterized graphs that can encode and detect com-
plex objects. The paper is organized as follows. We
describe in Sec. 2 the structure of the graph we use
for image and shape segmentation. Sec. 3 describes
the learning algorithm and its convergence properties.
We show our results in Sec. 4.

2 PROBLEM SETUP

We will demonstrate a learnable segmentation al-
gorithm for detecting and segmenting desired ob-
ject shape such as a rectangle in an image. The
shape detection-segmentation process begins with
edge detection. Each edge i is parametrized by
(xi, yi, θi), its location and orientation. Denote F (I) =
{e1, ..., ek|ei = (xi, yi, θi)} the set of edges detected for
image I, and F the complete set of possible edges de-

tected in all images. The goal of the segmentation
algorithm is to group the edges which form a rectan-
gle, and separate them from background edge clutters,
as shown in Fig. 11.

While a rectangle is a relatively simple shape, its as-
pect can be quite flexible with variable aspect ratio
in x, y, and variable orientation. Assuming we have
quantized the orientation into Nangle angles, for an
image size of Npixel × Npixel a brute force method
would need to search over O(N4

pixelNangle possible
configurations (for a 100 × 100 image with 10 ori-
entations quantization, we have 1 billion configura-
tions!). One way to avoid this large scale search is
to decompose the rectangles into simple local config-
urations (corners, lines, parallel lines), and combine
them by checking their global consistency. This data-
driven bottom-up process only needs to check roughly
O(Nedge) = O(|F (I)|) local configurations (assuming
a fixed neighborhood size). The global integration can
be carried out in the grouping framework of graph par-
titioning such as Ncut, which has empirically a running
time of O(N1.5

edge). Furthermore, the decomposition of
a shape into local edge relationships also makes the
detection more robust to image background clutter.

2.1 LOCAL SHAPE CONFIGURATIONS

We need to define functions on local configuration
goodness, with the hope of discriminating rectangu-
lar object vs. background. Since we are using ori-
ented edges, we can favor convex configurations and
penalize concave or other impossible configurations,
as illustrated in Fig. 2. The function that assesses
the goodness of a particular configuration is denoted
as clique potential: f(e1, . . . , eK) is high only when
(e1, . . . , eK) form a familiar configuration. The prob-
lem of designing this clique potential can be quite
complex in general. For example, consider the case
of binary relationships: we need to find a poten-
tial function for all possible pairs of edges (e1, e2):

Figure 2: Different oriented edge configurations and
associated clique potential. Left: three edges form-
ing a convex object (likely to be found in rectangle
shapes). Middle: concave configuration (unlikely in
rectangular shapes). Right: impossible configuration
(very unlikely to be found in any object).

Figure 3: Properties of the clique potential/affinity
matrix. Left and middle: translation and rotation
invariance, f(x1, y1, θ1;x2, y2, θ2) = f̄(x2 − x1, y2 −
y1, θ1, θ2) and, f(z1, θ1; z2, θ2) = ¯̄f((z2 − z1)e

−iθ1 , θ2 −
θ1). Right: summing up ternary affinities to obtain a
binary affinity, f(e1, e2) =

∑
i f3(e1, e2, ei).

f(e1, e2) = f(x1, y1, θ1, x2, y2, θ2). The function takes
4-dimensional inputs, and even in the simple case
of 10x10 possible edge locations, with 4 orientations
{π/2, 2π/2, 3π/2, 4π/2}, that makes 160,000 different
values to design through learning. To make the learn-
ing problem more managable, we use the following pa-
rameterization that induces translational invariance:

f(x1, y1, θ1;x2, y2, θ2) = f̄(x2−x1, y2−y1, θ1, θ2) (1)

If in addition we also require invariance by rotation,
the use of complex numbers comes in handy, with z =
x+iy we obtain f(z1, θ1; z2, θ2) = ¯̄f((z2−z1)e

−iθ1 , θ2−
θ1). These invariance properties are illustrated in Fig.
3.

2.2 GLOBAL SHAPE DETECTION FROM
LOCAL CONFIGURATIONS

With local edge clique function we could eliminate
wrong patterns of edges, retrieve the correct edge ori-
entation when ambiguous, and enhance good config-
urations. However, there are many ambiguous cases
in which local properties are insufficient to decide the
foreground/background labeling. Think about a weak
edge at object boundary, or a strong clutter edge in the

background. A direct thresholding technique would
fail here. Another example is provided by Fig. 4,
where a local approach would favor the wrong edge
orientation. As in the case of image segmentation, lo-
cal grouping measures need to be aggregated to form a
global segmentation decision. We will see in the next
section how to formulate this precisely in graph frame-
work, through Spectral Graph Partitioning.

Figure 4: Each edge has 2 hypothesized opposite po-
larities. We want to inhibit clutter edges and recover
correct polarity. Left: local segmentation of edges pro-
duces the wrong polarity for one edge (barred), group-
ing it with clutter. Right: global aggregation of edge
affinities yields a correct grouping and inhibits clutter.

2.3 SPECTRAL GRAPH PARTITIONING
FORMULATION

Such local relationships between image features are
well captured by the notion of graph G = 〈V,W 〉.
The graph nodes V consist of the image edge fea-
tures F = {ei}, and the graph edges are the rela-
tionships between the edge features with affinity ma-
trix W ∈ R

n×n defined by Wij = f(ei, ej). Higher-
order edge feature relationships can be translated into
binary affinities by summing over cliques: Wij =∑

i1=i,i2=j,i3,...,iK
f(ei1 , ..., eiK

), as illustrated in Fig.
3. We denote V (I) the image edge features, F (I),
detected in I; W (I) = W (V (I), V (I)), the subgraph
affinity induced by image features in I.

Let us recall our goal: we want to partition the graph
nodes V (I) into two groups, using an indicator vec-
tor X: Xi = 1 if detected feature V (I)i belongs to
foreground, and Xi = −1 if it belongs to background.
The segmentation process should ensure that edge fea-
tures (nodes) grouped together have high mutual affin-
ity, and nodes in different sets have low affinity. We
will use the Normalized Cuts (Ncut) criterion for the
segmentation process. Ncut criterion can be opti-
mized by finding the second generalized eigenvector
of (W (I),D(I)) (D(I) is the degree matrix of W (I)):

W (I)X(I) = λ2D(I)X(I) (2)

X(I) is then thresholded to determine the fore-
ground/background labelling. Note that, the solu-
tion we obtain for X(I) is an implicit function of the
weight matrix W (I), which is defined by the local

Figure 5: The XOR function. Suppose we have a face
detection graph with nodes: Left Nose (LN), Right
Nose (RN), Face (F), and Non-Face(NF). The Hebbian
learning rule, based on feature coocurrence, would find
the following weights: W (LN,F) = W (RN,F) =
W (LN,NF) = W (RN,NF) = 1

2 , making it impos-
sible to distinguish between a Face and a Non-Face.
The graph learning algorithm we propose does not suf-
fer from this.

clique potentials, f(ei, ej). However, its computation
is tractable and, as we shall see, we can apply pertur-
bation theory to analyze their effect on the segmenta-
tion task. This last point is essential: it means that
we can assign a blame to the local graph structure, by
looking at the global segmentation result. Hence the
system is not a black box anymore, we can train it.

3 LEARNING THE GRAPH

STRUCTURE

As we have seen, the design of the clique potential is
as crucial to the segmentation as it complex. In the
Ncut formulation, whether we use a parameterization
of the affinity matrix W (Θ) or a direct representation
through its coefficients Wij , real image segmentation
tasks will require a large number of parameters to be
optimized. Hence the need for a principled algorithm
to learn the clique potential.

3.1 WHY ARE SIMPLE LEARNING
SCHEMES INSUFFICIENT

One natural idea in learning the graph clique potential
is simply to measure the coocurrence of image features
accross a set of training images, in accordance to the
Hebbian rule. This rule strengthens the weight Wij if
feature i and feature j are strongly correlated, accord-
ing to: Wij =

∑
I V (I)iV (I)j in our notation. Though

intuitive, this rule is insufficient for our problem. Fig.
5 illustrates a typical situation that the Hebbian rule
is unable to handle, namely the XOR boolean func-
tion. More generally, the Hebbian rule cannot learn
non-linearly separable functions. We have shown in
[2]1 that our system does not have this limitation and
it could learn XOR.

1http://www.seas.upenn.edu/∼timothee/research.html

3.2 PRINCIPLE OF LEARNING

The Maximum Likelihood formulation (ML) tries to
adjust the clique potential so that it maximally ex-
plains the data (the set of training images). However,
this formulation doesn’t take into account the graph
inference procedure I → X(I), as a result, it can pro-
duce a probability distribution that cannot be infer-
enced efficiently. We use a different approach. We
adjust the clique potential so that the output of the
system gets closer to the desired segmentation. In the
following, we assume we are given a set of images I
with a target segmentation X∗(I).

3.3 COST FUNCTION FOR LEARNING

Definitions Xp[W], λp are the pth largest eigenvec-
tor, eigenvalue of WX = λDW X with ‖Xp[W]‖ = 1
and DW = diag(W1). Xp[W] is uniquely defined
up to polarity, which we disambiguate using a fixed
vector Y and forcing sign(Y T Xp[W]) = +1. This
is possible only when Y T Xp[W] 6= 0. We also re-
quire λp be unique. To satisfy these constraints, we
will restrict our attention to weight matrices W in a

certain subset S
2,X∗(I)
n of symmetric matrices, where

Sp,Y
n = {W ∈ Sn : W1 > 0, ker(W − λpDW) 6⊂ Y ⊥,

λp single}. Note that if W ∈ Sn and W1 > 0, W has
probability 1 of being in the feasible space. What’s

more, S
2,X∗(I)
n is open, which implies that any small

perturbation of W is allowed.
Define the one-target energy function:

E(W, I) =
1

2
‖X2[W (I)] − X∗(I)‖2, for W ∈ S2,X∗(I)

n

(3)

The multi-target energy function is defined as E(W) =∑
I E(W, I), for W ∈ ∩IS

2,X∗(I)
n . This error energy

function has the following property, which will be use-
ful later on when we try to learn the graph network.

Prop. 3.1 (E(W, I) has no local minimum) The
single target energy function has all its local minima
in S2,X∗

n

⋂ {W : λ2(W) 6= −1} equal to the global
minimum, 0.

The proof, in [2], shows that at a critical point, the
error vector X2 − X∗(I) is in the kernel of a certain
matrix of rank n-1. This shows in fact that X2 −
X∗(I) is proportional to X2, which finally leads to
X2 = X∗(I).

3.4 GRADIENT DESCENT ALGORITHM

We minimize the error energy over W by gradi-
ent descent: ∆W = −η ∂E

∂W
= −η ∂E

∂X2

∂X2

∂W
. When

W is parameterized by Θ, we have instead ∆Θ =

−η ∂E
∂X2

∂X2

∂W
∂W
∂Θ . In the case of rectangle detection, the

parameters Θ consist of all the values of the function
f(ei, ej) = f̄(x2 − x1, y2 − y1, θ1, θ2), which is a 4 di-
mensional lookup table.

The main difficulty is to study how the Ncut eigenvec-
tor, X2[W (Θ)], varies with the graph weight matrix
W (Θ). We will write down a continuous-time PDE
describing evolution of the error energy on X2[W (Θ)]
with respect to Θ. We show that this PDE has an ex-
act analytical form, and the resulting PDE converges.
We have also proved the convergence rate is exponen-
tial for a simple case[2]. This result shows that we can
minimize the error energy over W or Θ by gradient
descent.

Theorem 3.2 (Derivative of Ncut eigenvector)
The map W → (Xp, λp) is C∞ over Sp,Y

n , and we
can express the derivatives over any C1 path W (t)
as:

dXp[W (t)]

dt
= −(W − λpDW)†

(W ′ − λpD
′
W − dλp

dt
DW)Xp

dλp

dt
=

XT
p (W ′ − λpD

′
W)Xp

XT
p DW Xp

We obtain an analog theorem for the derivative of
standard eigenvectors, by simply replacing DW

with In. The proof in [2] uses the implicit function
theorem to show Xp[W] is C∞, then differentiates
WXp = λpDW Xp to obtain (W − λpDW)X ′

p + (W ′ −
λpD

′
W − λ′

pDW)Xp = 0.

Computation of the partial derivatives ∂X2

∂W
alone re-

quires O(n3) time because of the pseudo-inverse term
(W − λpDW)† in each gradient direction. We remove
this bottleneck by first left-multiplying by ∂E

∂X2

. We in-

troduce Y = −(W − λ2DW)†(X2 − X∗(I)), which we
showed how to compute efficiently in [2], and obtain a
O(n2) gradient update rule:

∂E
∂W ij

= X2,iYj + X2,jYi − λ2(X2,iYi + X2,jYj)

−λ′
2ijY

T DW X2

with λ′
2ij =

2X2,iX2,j − λ2(X2,i
2 + X2,j

2)

XT
2 DW X2

3.5 PROPERTIES OF THE LEARNING
ALGORITHM

Empirically, we observe that E(W (t)) converges to
0 exponentially fast when W (t) follows the gradient
path, even if the number of training examples grows
as O(n). We will prove this fact in the case of a single
target. The convergence of E(W (t)) however does not

−1 −0.5 0 0.5 1
−0.5

0

0.5

Point set 1
Point set 2

Energy map − Gradient descent

0 1.4 2.8 4.2 5.6

−0.6

−0.34

−0.08

0.18

0.44 start
end
intermediate

0 20 40 60 80 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Indicator Vectors

Target
Start
End

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Point set 1
Point set 2

Energy map − Gradient descent

0 10 20 30 40

0

10

20

30

40 start
end
intermediate

0 20 40 60 80 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Indicator Vectors

Target
Start
End

(A) Point set (B) Error Energy(C) Ncut eigenvector

Figure 6: Learning point set clustering. W (i, j) =
exp(−σx(x(i) − x(j))2) + exp(−σy(y(i) − y(j))2). A) 2D
layout of the points. The first set is the cross set and
the second is the star set. The resulting clustering can
be identified by the red and black colors. B) Energy
landscape of E(σx, σy), and gradient path taken by Eq.4,
(σ̇x, σ̇y) = −(∂E

∂σx
, ∂E

∂σy
). C) Target vector comparing with

initial and final learned Ncut vector. The graph nodes are
ordered according to their x-axis position (first row), and
to their distance to origin (second row).

imply that of W (t). Indeed, one can construct func-
tions for which gradient descent leads to limit cycle
oscillations. The following proposition shows that this
cannot happen here.

Prop. 3.3 (Exponential convergence of E(W, I))
The 1-target energy PDE Ẇ = − ∂E

∂W
either converges

to a global energy minimum W∞, or it escapes any
compact K ⊂ S2,X∗

n . In the first case, E(W (t)) → 0
exponentially.

Our proof in [2] shows that ‖ ∂E
∂W

‖ ≥ b
√
E , leading to

the convergence of W (t), and then d
dt
E(W (t)) ≤ −b2E ,

which shows the exponential decay of E(W (t)).

Pathological non-convergence cases. As stated in
the proposition, W (t) could potentially hit the bound-
ary of S2,X∗

n . This arises in 2 pathological cases: 1)
λ2(t) → 1 or λ2(t)−λ3(t) → 0, and 2) DW (t)(i, i) → 0
for some i. Note that X∗(I)T X2[W (t)] → 0 can-
not happen, because initially X∗(I)T X2[W (t)] > 0
and E(W, I) decreases. There are ways to alleviate
those problems through weight parameterization, but
in practice they only occur when learning a lot of tar-
get vectors.

4 RESULTS

4.1 POINT SET CLUSTERING

In experiment 1, figure 6, we examine our spectral
graph learning algorithm on simple 2D point set clus-
tering examples. The graph weight matrix Wij =

Input imageTarget vector
Ncut vector
multiscale

Ncut vector
best scale after multiscale learning

Ncut vector

Figure 7: A simple example of multiscale learning. The
input image is 40 by 40 and 4 narrow scales are used. The
best result (minimum of energy) with one scale is displayed
as well as the result with all four scales set up with the same
weight, and with the learned weight. The use of multiscale
enable to segment correctly the inside of the G. The lowest
energy is achieved after learning.

exp(−σx(xi − xj)
2) + exp(−σy(yi − yj)

2) has two pa-
rameters σx, σy which we aim to optimize. We update
(σx, σy) as follows:

∆σx = −η(X − X∗)T ∂X

∂σx

(4)

∆σy = −η(X − X∗)T ∂X

∂σy

(5)

We use directly the derivatives given in Sec. 3.4 with
the following expressions of W ′:

∂wij

∂σx

= −(xi − xj)
2 e−σx(xi−xj)

2

(6)

∂wij

∂σy

= −(yi − yj)
2 e−σy(yi−yj)

2

(7)

The experiments on simple clustering show a fast con-
vergence of the gradient descent. We also tested the
algorithm with radial distributed point sets.

4.2 MULTISCALE IMAGE
SEGMENTATION

In this experiment, we focus on an application of spec-
tral learning in image segmentation. The aim is to
provide a powerful tool to find the best scales of edge
extraction in Ncut segmentation[3]. Basically the idea
of multiscale segmentation is to use several edge scales
find a consistent segmentation of the image across
scales. The simultaneous use of various scale levels
is interesting for complex and big images which mixes
textures with sharp and soft contours. In those im-
ages, meaningful boundaries may exist at weak con-
tours or between textures that do not rise to edges.
Using simultaneously several scales of edges enable to
face this problem. The global affinity matrix is the
sum of r-affinity matrices at different scales:

W
(I)
i,j =

k∑

r=1

αr exp (−σr∆
(r)
i,j (I)) (8)

where ∆
(r)
i,j (I) is a matrix of the same size as W which

expresses a distance measure in a specific scale. Learn-
ing on the α coefficients of the scales enables to select

A

B

Figure 8: A: Training. Row 1: training input vector. Row
2: Ncut vector after learning. Row 3: target vector. B:
Testing. Row 1: testing input vector, Row 2: Ncut vector
after learning. For each edge, 2 polarities are hypothesized
(only 1 is displayed in Row 1 of Training/Testing). Notice
that after learning, not only clutter edges are suppressed
but also the correct edge polarities are recovered.

the scales and to set up the weighting coefficients when
more than two scales are required. Learning on σ coef-
ficients enables to find the sensitivity to edge strength
at a given scale.

The update rules for αr, σr are as following:

∆αr = −ηY (
∂W

∂αr

− λ
∂D

∂αr

− ∂λ

∂αr

D)X (9)

∆σr = −ηY (
∂W

∂σr

− λ
∂D

∂σr

− ∂λ

∂σr

D)X (10)

Figure 9: The learned shift-invariant graph clique
function f̄(x2 − x1, y2 − y1, θ1, θ2) with θ1 = 0, and
θ2 = π/2. Each 2D function corresponds to a fixed
(θ1, θ2) pair. The clique function learns to favor good
continuation of the edges with (θ1 = 0, θ2 = 0),
(θ1 = π/2, θ2 = π/2), and corner configurations (θ1 =
π/2, θ2 = 0), (θ1 = 0, θ2 = π/2)

4.3 SHAPE DETECTION

We first generate random rectangles in synthetic im-
ages of 100 by 100, see Fig. 8. The edges extracted, ei

are specified by its quantized location (xi, yi), orien-
tation θi, and polarity pi. Three graph weight clique
potential functions are implemented:

1. unconstrained f(e1, e2) = f(x1, y1, θ1, x2, y2, θ2)

2. translational invariant f(e1, e2) = f̄(x2 − x1, y2 −
y1, θ1, θ2)

3. translational invariant with ternary clique poten-
tial f(e1, e2) = 1

N

∑
k g(x1 − xk, y1 − yk, x2 −

xk, y2 − yk, θ1, θ2, θk).

We apply the following graph learning algorithms to
train segmentation algorithm to detect rectangles.

1. Generate random rectangles with one noise-
free and one noisy version per example.
Generate a random affinity matrix W to
start with

2. For each image I, extract edge features from
the noisy image to compute subgraph V (I),
and compute target X∗(I) from the noise-
free image

3. initialize E = 0; for each image I,

(a) W (I) = W (V(I),V(I)), using one of
the clique potential function f(ei, ej)
described above.

(b) Compute X2(I), second generalized
eigenvector of (W (I),DW (I))

(c) Update W (I) with gradient update and
propagate updating to each f(ei, ej)

(d) Update E := E + EI with the partial
energy EI = 1

2 ||X2(I) − X∗(I)||2

4. Go back to step 3 until E < threshold

Fig.8 display the results of the training and testing us-
ing shift-invariant clique function f̄ . Figure 4.2 shows
the shift-invariant clique function learned on a pair of
horizontal and vertical edges.

4.4 COMPARISON BETWEEN THE
DIFFERENT CLIQUE POTENTIAL
FUNCTIONS

We have applied the three methods to random rectan-
gles in 100 by 100 images. The unconstrained affinity
matrix has 40000 entries, shift-invariant clique func-
tion f̄ has 1444 entries and triplet clique function g
has 1042568 entries. Several simulations have been run

10
0

10
1

10
2

10
3

10
4

0

50

100

150

200

size of training set

P
er

ce
nt

ag
e

of
 r

em
ai

ni
ng

 n
oi

se

No constraint
Translation invariance
Translation invariance on triplet nodes

Figure 10: Square shape detection and enhancement.
For each simulation, the table indicates the percentage
of remaining noise (100 is the initial amount of noise)
on 2000 testing examples. These results have been
obtained for different sizes of training set, according
to three methods: 1- learning on full affinity matrix,
2- invariance by translation, 3- mean on third node
with invariance by translation.

for each training set and the result displayed in fig.10
have been averaged. We noticed a very low standard
deviation on our training sets.

We see that the best results are achieved with the
triplet clique method involving summation of ternary
affinities over a third node. With only 20 training
examples, an average of 75% of the noise was elimi-
nated in the 2000 testing examples. We achieved the
best result with a training data set of 500 squares.
15 iterations were enough to reach energy conver-
gence and it took 4 minutes. This fast convergence
can be explained by the averaging on a third node:
when the affinity between two nodes is updated, all
ternary affinities involving this pair are updated in a
single pass. Also, ternary clique potentials carry out a
stronger, more robust cue than binary affinities.

4.5 RECTANGLE DETECTION ON REAL
IMAGES

This rectangle detection algorithm can be applied di-
rectly on real images, fig.12. We just have to adapt
the filter parameters to have a good edge extraction.
The amount of noise on real images turns out to be
frequently below the one we used in the learning step,
thus giving those encouraging results.

References

[1] Francis R. Bach and Michael I. Jordan. Learning
spectral clustering. Advances in Neural Informa-
tion Processing Systems (NIPS), 2003.

Figure 11: Examples of rectangle detection on real images.
Left: edges detected, with arrows indicating orientation (2
opposite polarity hypothesis for each edge). Right: seg-
mentation of foreground edges (in red) versus background
clutter edges (in dark).

[2] Timothee Cour and Jianbo Shi. A learnable spec-
tral memory graph for recognition and segmenta-
tion. Technical Report MS-CIS-04-12, University
of Pennsylvania CIS Technical Reports, Philadel-
phia, PA, June 2004.

[3] Charless Fowlkes, David Martin, and Jitendra Ma-
lik. Learning to detect natural image bound-
aries using local brightness, color and texture cues.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence(PAMI), 26(5):530–549, 2004.

[4] Marina Meila and Jianbo Shi. Learning segmenta-
tion with random walk. Advances in Neural Infor-
mation Processing Systems (NIPS), 2001.

[5] Andrew Y. Ng, Michael Jordan, and Yair Weiss.
On spectral clustering: Analysis and an algorithm.
Advances in Neural Information Processing Sys-
tems (NIPS), 2002.

[6] Jianbo Shi and Jitendra Malik. Normalized
cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence(PAMI), 22(8):888–905, 2000.

Figure 12: Rectangle detection on real images. First col-
umn: image; second column: edges detected; third column:
rectangle detection using the graph. Graph weights are
learned with random rectangles in background noise.

